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A laboratory method of rough water surface diagnostics based on the use of a grid test-object is 
considered. The optical image of the object consists of a set of distorted lines with randomly arranged 
nodes. In the case of topological correspondence between the image and object, each node in the grid 
image corresponds to a node on the object, which permits one to easily identify the node. It is shown that 
based on the nodal coordinates in the distorted and undistorted image, one can determine the magnitude 
and direction of the surface slope at the point corresponding to the node in the distorted image. The 
theoretical prerequisites of the method are considered and results of numerical calculations are presented.  

 

In laboratory studies of the wave state of a water 
surface, optical methods for obtaining diagnostics of the 
wave state of the water surface find wide application. 
These include, in particular, methods based on an 
analysis of images of various test-objects located above 
or below the water and observed through the rough 
surface in refracted or reflected illumination.  

As was shown in Ref. 1, for the appropriate choice 
of the test-object it is possible to determine in a very 
simple way from its image both the "instantaneous" and 
statistical characteristics of the wave state. The 
simplest object allowing one to record realizations of 
the slopes of a rough surface is an "optical wedge" $ a 
test-object with a linear brightness distribution. The 
brightness distribution in the image of such an object 
contains a component proportional to the spatial 
distribution of the slopes of the water surface in the 
direction of maximum variation of brightness of the 
object.  

The principle of the use of a "wedge" type object 
lies at the basis of the method for determining the 
energy spectrum of the wave state from the image of 
the sea surface under conditions of illumination by 
scattered skylight.2,3 This same principle lies at the 
basis of a number of laboratory techniques for examining 

wind-driven waves (see, e.g., Refs. 4 and 5).  
It is obvious that information about the wave state 

of a water surface is contained not only in the energy 
parameters (brightness) of the image of the test-object 
but also in its geometrical characteristics. Probably the 
simplest example here is a point test-object, whose image 
is in general a set of randomly scattered points. Here the 
difference in the coordinates of an arbitrary "glint" in the 
image and a "reference" point, which can be obtained by 
observing through the air$water interface when at rest, 
has a linear dependence on the gradient vector of the 
water surface at the point where the glint is located. 
Thus, an analysis of the image of these glints makes it 
possible to extract information about a rough surface at a 
discrete set of points of the surface.  

Information about the wave state contained in the 
image of a point test-object is usually insufficient to 
reconstruct the slope field on a required segment of the 
water surface. A possible solution here is to increase the 
number of point objects. However, in this case it 
becomes necessary to make the objects differ from one 
another in some way, which is not a simple task; 
besides, this would entail the necessity of building 
receivers capable of responding to these differences, 
which is probably a still more complicated problem. A 
method free of these drawbacks is the method based on 
an analysis of images of a grid test-object. Such an 
object consists of a set of narrow stripes, for 
definiteness, of dark color on a bright background, 
spaced at equal intervals in two mutually perpendicular 
directions (Fig. 1).  

 

 
 

Fig. 1. Image of a grid test-object when observing through a 
flat air$water interface.  

 

The image of the object consists of a set of curved 
lines with randomly arranged nodes. Depending on the 
degree of distortion, the image can be either 
topologically equivalent to the object (Fig. 2) or not 
(Fig. 3). The character of the image depends on the 
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magnitude of the sea state of the rough surface and the 
depth of the object.  

 

 
 

Fig. 2. Image of a grid when observing through a rough 
surface for λ = 40 cm.  

 

 
Fig. 3. Image of a grid when observing through a rough 
surface for λ = 25 cm.  

 

If the inequality ap ≤ 1 (a = h/4, where h is the 
depth of the object and p is the maximum value of the 
second derivative of the surface), then the image has 
the form shown in Fig. 2. In this case each node in the 
image of the grid corresponds to one node on the 
object, which allows it to be "identified." The 
procedure of reconstructing information about the 
slopes of a rough surface, as in the problem of the test-
object, is the following: it is necessary to determine the 
coordinates of the corresponding nodes in the distorted 
and undistorted images and on this basis calculate the 
magnitude and direction of the slope of the surface at 
the point corresponding to the node in the distorted 
image.  

Note that in contrast to the method of wave-state 
diagnostics in Ref. 4, here we have the possibility to 
reconstruct complete information about the slope field 
of the rough surface at discrete, randomly located 

points. Reconstructing the slopes at an arbitrary point 
on the surface is an interpolation problem.  

Let us turn now to the quantitative side of the 
problem. Figure 4 depicts the observation scheme. The 
observation system (OS) is located at a height H above 
the water surface and in its most general form consists 
of a camera-obscura with a mosaic of photosensitive 
elements in the image plane located at the distance f 
from the plane of the entrance pupil. A grid test-object 
is located at a depth h under the water having cells of, 
for simplicity, rectangular shape. We will derive 
relations linking the coordinates R of an arbitrary node 
of the grid and coordinates ρ of corresponding node in 
the image plane. It follows from Fig. 4 that  

 R = hz0 + r $ 
h

γ0
 Ω0

0, (1) 

 ρ = $fz0 + 
f

γi
 Ω0

i, (2) 

 r = Hz0 $ 
H

γi
 Ω0

i, (3) 

where r is the position vector of a point on the water 

surface, γi,0 = (z0⋅Ω
0
i,0), where Ω

0
i,0 are unit vectors in 

the directions of the rays.  

 

 
 

Fig. 4. Observation scheme.  

 

A relation linking the vectors of the incident and 
refracted rays can be obtained from the refraction law; 
it has the following form6:  

 Ω0 = 
1
m

 [(Ωi $ A q(r)],  (4) 

where A = m
2 $ 1 + γ2

i $ γi, m is the refractive index 

of water, Ωi,0 are the projections of the vectors Ω
0
i,0 

onto the plane z = const.  
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Relations (1)$(4) were derived under the 

condition of smallness of the slopes q
2 << 1, and also 

neglecting elevations ζ of the surface, which is valid for 
H, h >> ζ.  

Let us express the parameters entering into 
relations (1)$(4) in terms of the coordinates of a node 
in the image:  

 Ωi = 
ρ

ρ
2 + f 

2
 ;    γi = 

f

ρ
2 + f 

2
 ; 

 r = $ρ 
H

f
;   γ0 = 

1
m

 m
2 $ 

ρ
2

ρ
2 + f 

2 . (5) 

From relations (1)$(5) we obtain by way of some 
uncomplicated transformations an equation linking the 
coordinates of a node (grid point) on the object with 
the coordinates of a node on the image:  

 R = $ρ 
H

f
 ⎝
⎛

⎠
⎞1 + 

h

mHαρ

  + h 
αρ $ 1/m

αρ

 q ⎝
⎛

⎠
⎞$ρ 

H

f
  , (6) 

where  

 αρ = 1 + 
ρ
2

f 

2 ⎝
⎛

⎠
⎞1 $ 

1

m
2  . 

For an undisturbed surface Eq. (6) yields a 
relation between the coordinates of the node R on the 
object and the coordinates ρ0 in its undistorted image:  

 R = $ρ0 
H

f
 ⎝
⎛

⎠
⎞1 + 

h

mHα0
  , (7) 

where  

 α0 = 1 + 
ρ

2
0

f 

2 ⎝
⎛

⎠
⎞1 $ 

1

m
2  . 

Thus, we have obtained two equations which 
determine the coordinates of the nodes in a distorted 
image and the undistorted image of a grid test-object. 
Equating the right-hand sides of Eqs. (6) and (7), we 
obtain one equation which determines the value of the 
gradient vector of the rough water surface:  

 q ⎝
⎛

⎠
⎞$ρ 

H

f
 = 

αρH

hf(αρ $ 1/m)
 × 

 × ⎣
⎡

⎦
⎤ρ ⎝

⎛
⎠
⎞1 + 

h

mHαρ

  $ ρ0 ⎝
⎛

⎠
⎞1 + 

h

mHα0
   . (8) 

We rewrite Eq. (8) in the coordinate system 
associated with the air$water interface:  

 q(r) = 
βr

h(βr $ 1/m)
  × 

 × ⎣
⎡

⎦
⎤r0 ⎝

⎛
⎠
⎞1 + 

h

mHβ0
  $ r ⎝

⎛
⎠
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h

mHβr
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where  

 βr = 1 + 
r
2

H
2 ⎝
⎛
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1

m
2  , β0 = 1 + 

r
2
0

H
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⎛

⎠
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 r = $ρ 
H

f
 , r0 = $ρ0 

H

f
 . 

Expression (9) takes an especially simple form in 
the case when the observation angle of the object is not 
large (r, r0 << H) and the observation system is located 
sufficiently far from the water surface (H >> h/m): 

 q(r) = 
1
a
 (r0 $ r),  (10) 

where a = h (m $ 1)/m.  
To check the adequacy of the proposed method of 

reconstructing the slope field of a rough water surface, 
we performed some numerical calculations. We modeled 
the situation of an air$water interface prescribed by the 
sum of three harmonic waves having the same 
amplitude σ and wavelength λ and propagating in 
directions differing by 120°. The modeling was carried 
out in several steps.  

In the first step the problem was solved of 
formation of the distorted image of the test-object, 
consisting of a panel with dimensions 0.8×0.8 m with 
the figure of a grid imprinted on it consisting of 17 
stripes along two orthogonal directions (grid step 5 cm, 
stripe width 2 mm). The depth of the object was 2 m. 
The image of the test-object when observing through 
the calm water surface is shown in Fig. 1. The initial 
(undistorted) image of the object, created on a display 
with the usual scale transformation from real 
coordinates to screen coordinates, was scanned line-by-
line with a scanning step of 1 pixel. At each point on 

the screen the screen coordinates r
e were transformed 

into the real coordinates r. In accordance with the 
formula r0 = r + aq(r) we determined real coordinates 
of points in the object plane, which then were 
transformed into the screen coordinates. Next the screen 
brightness at the point r0 was determined (this 
brightness is nonzero if the point belongs to the figure 
of the grid and is zero if it lies outside it). The 
distorted image obtained in this way consisted of 
640×480 points defining the resolution of the VGA 
display. Figure 2 shows an image obtained when 
observing through a surface with λ = 40 cm and 
σ = 4 mm. (The surface elevation function is shown in 
Fig. 5 in the form of a contour plot.) 

In the second step the problem arose of 
determining the gradient vector of the slopes of the 
water surface at the nodes of the distorted image. The 
image of the object was displayed on the screen and by 
means of a cursor that could be repositioned by the 
operator the coordinates of all the nodes in the 
distorted image of the grid ri were determined and 
recorded in the form of a square matrix M. In addition, 
the matrix M0 was created, containing information 
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about the coordinates of the nodes r0i of the undistorted 
image (a regular grid). Next, according to the formula  

 qi(r) = (r0i $ ri)/a 

using the data contained in M and M0 the values of 
the gradients of the slopes were determined 
successively at all nodes of the distorted grid. The 
results obtained at this step were recorded in the 
form of the square matrices Qx and Qy containing the 
values of the slope components qx and qy at the nodes 
of the distorted grid. Note that the process of 
"deciphering" the nodes of the distorted grid by hand 
is quite laborious; however, the proposed method of 
analysis of wave processes can be automated.  

 

 
 

Fig. 5. Contours of the surface elevation function 
(λ = 40 cm).  

 

In the third step the problem was solved of 
interpolating the values of the matrices Qx and Qy to 
the nodes of a regular grid. To determine the values 
of the function qx (or qy) at some point, we used 
information on the values of this function at the four 
nearest nodes of the distorted grid. In this case, the 
point turned out to lie inside an irregular 
quadrilateral. The question of which quadrilateral a 
point belonged to was key here and was solved by a 
special calculational scheme. As the interpolation 
formula we used the incomplete quadratic form 
z = axy + bx + cy + d. The results obtained at this 

step were recorded in the form of the matrices Q0
x,y, 

whose elements, in contrast to the matrices Qx,y, 
were determined at the nodes of a regular grid.  

In the fourth step the problem was solved of 
constructing two-dimensional distributions of the 
components qx and qy of the gradient vector of the 
rough surface; in particular in the form of lines of 
equal level. To solve this problem, we used data 

contained in the matrices Q
0
x,y. Note that in 

constructing the graphs we made use of traditional 
 

and well-known interpolation schemes. Figure 6a 
plots the spatial distribution of the x component of 
the slopes, and Fig. 7a shows the spatial distribution 
of the y component (so as not to clutter the figures, 
only the positive half-waves are shown). Figures 6b 
and 7b plot theoretical distributions of the functions 
qx(r) and qy(r). Comparing the distributions 
obtained by processing the modeled images with the 
theoretical distributions, one can convince oneself of 
their good agreement. "Edge" errors are a result of 
the fact that some nodes of the regular grid fall 
outside the distorted image. The maximum error of 
reconstruction of the slopes, as analysis shows, in the 
example under consideration does not exceed 12%. 
This error can be decreased if one uses a test-object 
with less distance between the nodes.  

 

 
= 

 
b 
 

Fig. 6. Slope field qx(r) of a water surface (λ = 40 cm):  
(a) reconstructed, (b) theoretical.  
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Fig. 7. Slope field qy(r) of a water surface (λ = 40 cm):  
(a) reconstructed, (b) theoretical.  

 

In conclusion we stress again that the proposed 
method of reconstructing the spatial distribution of 
slopes of a rough water surface works well only under 
the condition of sufficiently "smooth" and 
"continuous" distortions of the image of the test-
object. Only in this case is the topological character 
of the image equivalent to that of the object, and the 
main requirement on the possibility of solving the 
inverse problem is that an exact one-to-one 
correspondence of the nodes in the image and on the 
object be rigorously obeyed. This circumstance limits 
 

the region of applicability of the method to 
laboratory conditions. Note, however, that in the case 
when one point on the object corresponds to several 
points in the image (see Fig. 3), the inverse problem 
can still be solved, but this would require the quite 
tedious work of "identifying" the nodes in the image. 
This work can be done by a human. It could be 
automated, but this would also be a difficult task.  

The optical method proposed here for recording 
wave phenomena on a water surface was used as an 
experimental check of a theoretical model of the 
transformation of surface waves on a two-dimensional 
inhomogeneous flow. The experiments were carried out 
in a large hydrophysical basin of the Institute of 
Applied Physics, RAS, with length 20 m, width 4 m, 
and depth 2 m. As the test-object we used a panel with 
dimensions 1.5×1.5 m with a figure imprinted on it 
consisting of a system of stripes with a spacing of 5 cm. 
The depth of the object was 1.64 m. The optical 
receiver was based on a CCD television camera located 
at a height of 0.67 m. Deciphering of the coordinates of 
the nodes in the image and calculation of the values of 
the slope field of the water surface were performed on a 
personal computer using formulas (8) and (9). The 
experiments, whose results are reported in Ref. 7, 
demonstrate the practical operability of the proposed 
method of reconstructing the slope field of a rough 
water surface.  
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