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We consider a two-stage procedure of correction and reconstruction of images of the Earth’s 
underlying surface recorded with the AVHRR instrument from NOAA satellites in some situations 
observed in spring and fall seasons. The method of histogram transforms is used at the first stage to 
eliminate the effect of a semitransparent cloud cover (the stage of data correction). In order to eliminate 
screening by clouds, the approach based on the data reconstruction using non-parametric regression 
relations is used at the second stage (the stage of reconstruction). Examples of the correction and 
reconstruction of the actual images recorded with the AVHRR device are presented. 

 

1. Introduction 
 
The difficulties existing in analysis of videodata 

obtained in situations when isolated sections of the 
Earth’s surface are obscured by semitransparent haze or 
cloud fragments are known quite well. The problem 
arises on reconstructing the portions of videodata which 
are distorted by the atmosphere. Analysis of images of 
the underlying surface of the Earth (USE) recorded 
with a the five-channel AVHRR device from NOAA 
satellites shows that often only separate sections of 
analyzed scenes are obscured by semitransparent aerosol 
formations when the outlines of relief are viewed 
through them. At the same time in the thermal ranges 
recorded in channels 3, 4, and 5 these formations 
manifest themselves as screens. All the variety of other 
situations connected with the distorting effects of cloud 
formations is not considered in this case. If an image is 
not distorted over the main part of the videodata field 
then the correction for a semitransparent haze within 
separate sections of sufficiently small areas can be 
performed based on the approach connected with the 
transform of brightness histograms. In this case it is 
proposed that the standard histogram of brightness 
distribution of an image section observed under œgoodB 
visibility conditions is known. Then this section of 
videodata is recorded under conditions effected by a 
haze. It causes a compression of the dynamic range of 
observations and distortion of the histogram shape. A 
problem is in the conversion of radio brightness of a 
shaded image so that the corrected image will have a 
histogram which is similar of the standard histogram.  

Another one approach to reconstruction of the 
localized sections of multichannel videodata is based on 
the predicting abilities of regression relations describing 
the interrelationships of physical fields of the radio 
brightness. In this case a nonlinear regression equation 
is reconstructed beforehand using the complete sections 
of image with no distortions present, and then it is used 

to reconstruct the image sections lost by the screening. 
In this case it is necessary to provide for the texture 
(statistical) uniformity of sections of the videodata, 
that have been selected for teaching (to reconstruct the 
regression relation), and of the section to be 
reconstructed, which is distorted or shaded. The 
investigation of physical models to form a thermal 
radiation and reflection of day light in the thermal and 
visible ranges leads to the conclusion that a correlation 
between their radio brightness exists. Moreover, the 
account of random factors connected with the change of 
slope of surface elements causes a positive correlation, 
and the integral reflection factor of solar radiation 
causes a negative correlation between the brightness 
values in the thermal and visible ranges. In the 
literature1 analysis of visible and infrared brightness 
correlation was performed using models and actual 
objects of the underlying surface of the Earth. It was 
noticed that the type (positive or negative) and the 
magnitude of correlation depend on the texture and 
reflecting properties of the surface. In this connection it 
is natural to use a nonlinear regression equation to 
reconstruct the faulty components of one field from 
observations of the other field.  

 

2. Correction for a semitransparent 
shading of image fragments by the 

method of histogram transform 
 

Let us consider the approach based on the method 
of histogram transform. It is appropriate to use this 
approach in the cases when the observed image is 
distorted by a semitransparent aerosol formation, while 
in addition the brightness distribution histogram of this 
section of videodata obtained under the conditions of 
good visibility is known. The latter histogram can be 
changed by a histogram of an adjacent section of the 
image if it is equivalent by texture to that under 
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reconstruction and is not shaded on the given image. 
Note, that the image histogram as a statistically mean 
characteristics is more stable as compared with a 
specific sample of observations.  

Allowing for the resolution of the AVHRR 
instrument when a 1 × 1 km section of the underlying 
surface is mapped into a pixel of videodata the model 
of shading effect on the surface image in the 
mathematical sense has a form of a convolution 
operator. The point spread function for semitransparent 
aerosols which are adjacent to the reflecting surface has 
the delta-component and an extended spectrum and it is 
unknown. Let us make an attempt to describe this 
situation with histograms. We will assume that the 
ideal conditions for observing some sections of the 
Earth surface form the radio brightness distribution 

described by the histogram ĝ(y), and the effect of 
semitransparent haze causes a distortion of the 

histogram ĝ(y) so that we observe the brightness 

distribution f̂(x) with a decreased dynamic range and 

displaced domain of the videodata definition.  
For simplicity let us first assume that x and y are 

continuous values, x, y ∈ [0,1]. The radio brightness 
distribution of a shaded image will be described by the 
probability density function f(x), and the radio 

brightness distribution of an ideal (standard) image 
will be described by the distribution g(x). To 
reconstruct the image, we use the transforms of the 
brightness 

 y = T(x),  x, y ∈ [0,1], (1) 

where x are the values of brightness of a shaded image, 
and y are the values of the clear image brightness. 

We shall consider the class of reconstructing 
transforms T(.) which are unambiguous and strictly 
monotonic on the interval [0, 1]. Thus the inverse 

transform T
$1(.) will also be strictly monotonic on 

[0, 1]. The monotony condition preserves the order of 
change from the black to white in the brightness scale 
of a reconstructed image.  

Allowing for the fact that the values x and y are 
functionally related, their probability distributions are 
expressed in the following way2: 

 g(x) = f(x) 
dx

dy  x=T$1(y)
, (2) 

where T$1(.) is the inverse transform.  
To find the transform y = T(x), let us consider 

the following two-stage procedure of identifying 
y = T(x) (see Refs. 2 and 3). Let us make use of the 
property of integral distribution function, integrated as 
a transform, to smooth the frequencies, namely 

 t = F(x) = ⌡⌠
0

x

 
 f(s) ds, (3) 

where F(x) is the integral distribution function, t is 
distributed uniformly on the interval [0, 1]. On the 
other hand by analogy with the expression (3) we have 

 t = G(y) = ⌡⌠
0

y

 
 g(s) ds, 

where G(y) is the integral distribution function. 
Equating these expressions, G(y) = F(x), we obtain 

 y = T(x) = G$1[F(x)], (4) 

where G$1(y) is the inverse transform.  
Thus, changing at the first stage to the uniform 

brightness distribution by the formula (3), and 
inverting, at the second stage, the transform G(.) we 
obtain the unknown brightness distribution and 
expression for correcting the transform y = T(x).  

Then we consider a discrete version of the 

transforms (4). Let X = {Xi}
n
i=1 be a fragment of the 

image with the assigned numerical values (the fragment 
is not obligatory rectangular) and n is the number of 
pixels within this fragment. Let us assume that this 
fragment is distorted by the atmosphere, and 

Y = {Yi}
n
i=1 is the fragment of data with assigned 

numerical values recorded under œgoodB visibility 

conditions. This fragment allows the histogram ĝ(y) to 
be reconstructed.  

When the brightness levels take discrete values, 
the expression (3) has a table form3: 

 tk = F̂(xk) = ∑
j=0

k

 f̂(xj) = ∑
j=0

k

 
nj

n
 , 

 0 ≤ xj ≤ 1, k = 0, ..., L $ 1, (5) 

where L is the number of discrete brightness levels; nj 
is the number of elements from the total number n 
which have a level j in the discrete image.  

Accordingly, a discrete form of the expression (4) 
is as follows: 

 tk = Ĝ(yk) = ∑
j=0

k

 ĝ(yj) = ∑
j=0

k

 
nj

n
 , 

 0 ≤ yj ≤ 1, k = 0, ..., L $ 1. (6) 

Therefore, the conversion of such a function is achieved 
by rearranging the input and output and together with 
expression (5) can be used to correct the radio 
brightness by the method of histogram transform.  

 

3. Reconstruction of images based on 
the regression equations of prediction of 

random fields of radio brightness 
 

Let us consider the approach to videodata 
reconstruction based on the regression relationship. To 
construct the regression equation, it is necessary to 
have a clear (undistorted) fragment of an image which 
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is put into the point by point correspondence with the 
reconstructed section of videodata. Moreover, to adapt 
the equation to specific videodata, the section of 
undistorted videodata recorded in two channels 
simultaneously is needed (we call such a fragment as 
teaching).  

We will describe the values of the predicted field 

that is being reconstructed by a random value Y ∈ R1, 
and the radio brightness of the fields, which are the 
sources of information for prediction will be described 

by the random vector X ∈ Rk, where R
k is the k-

dimensional Euclidean space; X = (X1, ..., Xk)T, Xi are 
the radio brightness measured in the ith channel of the 
AVHRR instrument, i = 1, ..., k = 5, T is the 
transposition sign.  

Interrelation of the predicted variable Y and 
vector X we will describe by the regression functional 

 m(x) = E(Y/X = x), (7) 

where E(.) is the operator of mathematical expectation, 
and E(|Y|) < ∞.  

If the following probability densities of the random 
values X and Y exist, then allowing for Eq. (7) we 
have 

 y = m(x) = ⌡⌠
R1

 
 y 

f(x, y)

f(x) f(y)
 dF(y), (8) 

where x ∈ Rk, y ∈ R1, f(x, y) is the simultaneous 
probability density of the vector X and value Y; f(x) is 
the probability density of the random vector X; f(y) is 
the probability density of the random value Y, and 
F(y) is the distribution function of Y.  

If we have a sample of random independent, in 

pair, values and equally distributed {(Xi, Yi)}
n
i=1, where 

n is the number of check readouts on the test section 
then to calculate the expression (7), it is natural to use 
non-parametrical estimates of unknown distributions 
using selected data.4 Let us change the unknown 
distributions for their non-parametrical estimates of the 
kernel type, and F(y) by the empirical function Fn(y). 
Then the estimate of the regression equation (8) takes 
the form 

m̂h(x) = ∑
l=1

n

 

 

Yl ∑
j=1

n

 Kh (Yl $ Yj)
 
Π
k

i=1

 Kh (xi $ Xi
j)

∑
j=1

n

 Π
k

i=1

 Kh (xi $ Xi
j) ∑

i=1

n

 Kh (Yl $ Yi)

 , (9) 

where h is the width of a window (smoothing or scale 
parameter) described by the function Kh(u) = h$1 × 
× K(u/h). The Epanechnikov kernel of the following 
form: Kh(u) = 0.75 (1 $ u2) I(⏐u⏐ ≤ 1), where I(.) is the 
indicator function or the Gaussian kernel, is taken as 
K(.).4  

The practical experience of using similar estimates 
shows that the accuracy characteristics of the regression 

equation m̂h(x) are determined to a greater degree not 
by the kernel form but by the scale parameter h. In this 
connection the problem arises on estimating h allowing 

for the particular sample of observations {(Xi, Yi)}
n
i=1.  

To estimate h, let us use the method of sliding 
control which assumes that a modified estimate is 

constructed of the regression m
∧

hj(Xj), in which the jth 
observation is consecutively omitted, (Xj,Yj), 
j = 1, …, n . This observation Yj at the point Xj must 
be reconstructed all other observations {(Xi,Yi)}i≠j 
which enters the equation (9) in the best way. The 
performance criterion for estimate of h depends on the 

ability to predict the set of values{Yj}
n
j=1 by the set of 

samples {(Xi, Yi)}i≠j: 

 J(h) = n$1 ∑
j=1

n

 [Yj $ m̂h,j(Xj)]
2 w(Xj), (10) 

where w(.) is the weighting function that in the 
simplest cases can be not used (proposed to be equal to 
unity). The problem of optimizing the estimate (10) by 
the parameter h is solved numerically by the search 
method of adaptation.5  

After the parameter h in the expression (9) for  

m̂h(x) is specified the regression equation can be used 
to reconstruct the values Y by the observed X for the 
fragment of videodata obscured by clouds. Note that 
the regression model of prediction of unobserved values 
will only work if the statistical uniformity holds of the 
data which are used to reconstruct the relation and of 
those that are to be reconstructed. For this preliminary 
analysis of the œcompleteB image by a segmentation 
algorithm enabling one to select statistically uniform 
sections is necessary. Then it is necessary to reconstruct 
the local expression (9) with its values of h at every of 
such sections. 

 

4. Correction and reconstruction of the 
images of the underlying Earth’s surface 
recorded with the AVHRR instrument 

 

The problem of atmospheric correction in a general 
statement is sufficiently complex, and the considered 
approaches are oriented on some particular situations of 
the atmospheric distortions which occur in practice. So, 
when the underlying surface of the Earth is recorded in 
fall and spring periods, we often observe the following 
picture. In the 1st and 2nd observation channels we 
note a semitransparent shading of some sections of the 
videodata. At the same time in the 3rd, 4th, and 5th 
channels we have a complete screening of these image 
fragments by thermal anomalies. At the same time the 
sections of similar texture and the absence of shading 
exist on the images. This similarity principle is a pre-
condition for using the developed approaches. At the 
first stage of the reconstruction of such images we 
perform a correction of sections with the 
semitransparent shading by the method of histogram 
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transform. For this we choose two texture-uniform 
image fragments selected in Fig. 1, one of them is 
œclearB and another one shaded and hence it is to be 
corrected.  

 

 
 

Fig. 1a. The image of 1st channel with the example of 
semitransparent shading of a part of the image and selection of 
the standard (at the top) and reconstructed (at the bottom) 
fragments. 

 

 
 

Fig. 1b. The example of corrected fragments of the 1st and 
2nd channels of the image by the method of histogram 
transform. 
 

We estimate the histograms from both sections 
(Figs. 2a and b) and from the relation (4), and correct 
the shaded fragment based on this relation. The result 
of correction is presented in Fig. 1b. The quality of 
thus obtained image can be estimated by the degree of 
adequacy between the standard histogram and the 
histogram of the corrected image (Figs. 2a and c). One 
should take into account the line character of the latter 

histogram what is connected with the discreteness of 
brightness of the transformed image, while the 
theoretical grounds of the approach are correct for the 
continuous interpretation. This effect manifests itself in 
that the integral performance criterion gives slightly 
overestimated values because of the absence of some 
values of brightness in the corrected image.  
 

 
Fig. 2. Histograms of the image fragments presented in 
Fig. 1a: a standard section (a), a semitransparent shaded 
fragment (b), and the reconstructed fragment (c). 
 

 
 

Fig. 3. The clear spring image in the 2nd channel œPutoran 
plateauB with a selected fragment for "teaching" of the 
reconstructing regression (at the top) and in the control 
fragment. 

 
Then the stochastic relations of radio brightness 

of the AVHRR channels, which were reconstructed 
using non-parametric equations of nonlinear 
regression were investigated. For this a 512 × 512 
readouts section of image in five channels (Fig. 3) 
was selected, the regression equations were 
reconstructed using a teaching fragment, and the 
problem of reconstructing the data in 2nd, 3d, 4th, 
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and 5th channels by the observations in the 1st 
channel in the control fragment (Figs. 3 and 4) was 
solved. The regression equations were reconstructed 
using the teaching fragment by the method of sliding 
control. In this case the value of the  functional of 
the sliding control (10) was 3.4%. Then the 
reconstructed regression relations were applied to 
another one fragment which is similar in texture, and 
the similarity property was determined approximately 
by an operator manually (in this case the procedure 
of cluster analysis can be used, and the similarity 
zones can selected automatically). The quality of 
prediction in the spectral channels within another 
fragment different from the teaching one was 3.4% 
also. 

 

 
 

Fig. 4. The initial (a) and reconstructed (b) image fragments 
(presented in Fig. 3) using five channels, respectively. 
 

 
 

Fig. 5a. Correction for a semitransparent shading in the 
image center by the method of histogram transform 
(channels 1 and 2). 

 
 

Fig. 5b. The example of screening of the underlying surface of 
the Earth by the thermal anomaly in the 4th and 5th channels. 

 

 
 

Fig. 5c. The example of reconstruction of the screened section 
of an image in the 4th and 5th channels by the method of 
regression prediction. 

 
Figures 5a, b, and c show the complete cycle of 

the two-stage procedure of correction and 
reconstruction: Figure 5a presents the fragment of the 
histogram correction of a semitransparent shading in 
the 1st (2nd) channel, Figure 5b presents the screening 
thermal cloud in the 4th (and 5th) channel which was 
semitransparent in the 1st channel. Finally, the 
Figure 5c shows the image in the 4th channel 
reconstructed using the non-parametric regression 
equation.  
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4. Conclusion 
 

High performance of the approach to reconstruction 
of images with the regression relation was demonstrated 
using the fall and spring AVHRR images only. In the 
case of summer images the reconstruction quality in the 
2nd channel by the data from the 1st channel was 
unsatisfactory. But with summer images we were unable 
to observe the described effect of semitransparent shading 
(in the 1st and 2nd channels) and screening (in 3rd and 
5th channels) which were corrected and reconstructed in 
the given case. 
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