IR-spectroscopy of XF_3 and XF_5 interhalides (X = Cl and Br)

Sh.Sh. Nabiev

Russian Scientific Center "Kurchatov Institute," Moscow

Received July 1, 1999

IR absorption spectra of XF₃ and XF₅ (X = Cl and Br) molecules in gas phase and cryogenic solutions of Kr (T = 130 K) and Xe (T = 180 K) within wide range of frequencies (200–2500 cm⁻¹) including the range of the 3rd order transitions were studied. Integral value of the absorption coefficient of the v₇(E) band of XF₅ has been determined, as well as relative intensities of all bands observed in the XF₅ infrared spectrum and anharmonicity constants for some XF₃ and XF₅ vibrations. It is shown that contrary to BrF₃, a splitting of asymmetrical vibration band into (Cl–F)_{ax} bonds of ClF₃ is due to Coriolis interaction between energetically close levels v₁(A_1) and v₄(B_1) when the molecule rotates about the axis of maximum moment of inertia. Based on analysis of spectroscopic data, results of *ab initio* calculations, as well as estimates of the polarization *d*functions importance for central atom and effects of electron correlation, the conclusion was drown that the model for calculating the infrared intensities for XF₅ (X = Cl and Br) molecules should take into account both the difference in characters of (X–F)_{ax} and (X–F)_{eq} bonds and contributions from nonrigid intramolecular regroupings according to tourniquet mechanism.

Introduction

In recent years, interhalides of XF_3 and XF_5 type (X = Cl, Br) have gained an extensive use in various branches of science and technology. The halogen fluorides, as fluoridating agents, are widely used in water free ("dry") processes of nuclear materials processing.^{1,2} Besides, these compounds are used actively in chemical, electronic, and metallurgy industry, for example, in synthesis of power-consuming complex fluorine-containing compounds,^{3–5} gas-phase etching of semiconductors, smelting and cutting of refractory metals,^{6,7} and are also of certain interest for laser technology and production of chemical sources of electric current.⁸ Finally, interhalides are the components of jet fuels and propellants. The hypergolic properties of these compounds can be used in solid propellants.⁹

At the same time Cl and Br fluorides can be very toxic and chemically active components of the emergency emission plumes from the aforementioned industries.¹⁰ These compounds actively interact with water vapor and other gaseous components of the atmosphere. This results in formation of molecules of hydrogen halides, oxyfluorides, and Cl and Br oxides, which, in their turn, can be easily transformed into stable molecular complexes of donor-acceptor type¹¹ (HHal)_x...(H₂O)_y, where Hal = F, Cl, and Br; $x + y \ge 2$. In order to study the mechanisms of reactions involving XF₃ and XF₅ (X = Cl and Br) and their secondary compounds in the atmosphere and to analyze the applicability limits of the methods of remote laser diagnostics, more comprehensive information on the interhalides vibrational spectra is needed.

The Cl and Br trifluorides and pentafluorides were first synthesized quite many years ago.^{6,7,12} Nevertheless, the information on vibrational spectra of XF₃ and XF₅ (X = Cl and Br) compounds is not abundant. Data on spectroscopic parameters like anharmonicity constants, isotopic shifts of vibrational frequencies, as well as absolute and relative strengths of fundamental, combination, and overtone transitions, including the transition range of high ($\nu \ge 3$) order, are practically unavailable.

In this work, we have studied the IR absorption spectra of XF_3 and XF_5 molecules (X = Cl, Br) in gas phase (T = 300 K) and in solutions of liquefied gases Kr (T = 130 K) and Xe (T = 180 K) in a wide frequency range (200–2500 cm⁻¹). The advantages of the cryogenic method over the gas spectroscopy are well known.¹³ We pay particular attention to mechanisms of the compounds chemical transformation under conditions of their interaction with atmospheric moisture, as well as to determination of integral absorption coefficients for vibrational bands falling into the range used for operation of lidars (including multifrequency ones) based on mid-infrared molecular lasers.

1. Experiment

The main units of the experimental setup, described in detail in Refs. 14 and 15, were a set of gas cells and cryostats; IR-spectrophotometers; bottles with XF₃ and XF₅ (X = Cl, Br), fluorine, and noble gases; a system for intake of the gases under study and gas-solvents, and sensors for the temperature and pressure control.

The infrared spectra of the XF_3 and XF_5 (X = Cl, Br) specimens were recorded with the help of dual-channel diffraction spectrophotometers "Perkin Elmer-325" and "Specord-75 IR" with the entrance slits spectral width of 0.8 to 1.5 cm⁻¹. Calibration of the spectrophotometers' wave number scale was performed using CO, CO₂, N₂O, CH₄, and H₂O spectra and data from Ref. 16. Within the frequency range lower than 1000 cm⁻¹, the spectrum was corrected for the negative light fluxes.¹⁷ Relative error in the integral absorption coefficients determined for most intensive bands in the IR-spectra of XF_3 and XF_5 (X = Cl, Br) in cryogenic solutions did not exceed 15%. The values of the vibration bands' half-widths were corrected for final width of the slit according to Ref. 18. The values of the integral absorption coefficients for free molecules were recalculated by the following formula¹³

$$A_{\rm gas} = A_{\rm sol} \left[9n/(n^2 + 2)^2 \right] = K(n) A_{\rm sol}, \tag{1}$$

where *n* is the refractive index of a cryogenic solution. For liquid Ar ($T \cong 90$ K) n = 1.23, for Kr ($T \cong 130$ K) n = 1.29, and for Xe ($T \cong 180$ K) n = 1.39. The correcting coefficient

K(n) takes into account a set of factors mainly related to change of the strength of light field incident onto a cryogenic solution as compared that in vacuum.

Pressure in the gas intake system was monitored by the pressure sensors DP-5, "Sapfir-22DA," and manometers; the temperature of the cryostat working volume was measured using a specially designed thermometer. The measurements of cryogenic solution temperature were conducted by Chromel-Alumel and copper-constantan thermocouples introduced into the cryostats' working volumes. We used multipass gas cells based on White optical arrangement allowing the length of the optical path to be varied from 12 to 100 cm, as well as cryostat cells with the length of optical path of 3.5 to 10 cm.

In preparing the XF_3 and XF_5 (X = Cl, Br) solutions in liquid Kr and Xe, we used the technique of dissolving crystal phase samples of these compounds in a liquid noble gas.¹⁹ To do this, some amount of XF₃ and XF₅ was frozen on thoroughly passivated inner walls of the cryostat's working chamber, on which the noble gas was then condensed. The XF₃ and XF₅ samples were thoroughly purified. According to the data of quantitative analysis conducted by the method described in Ref. 20, the concentration of impurities, like HF, CF₄, and so on, in the samples of interhalides was lower than 0.1%.

The accuracy of determination of the XF₃ and XF₅ concentration in the cryogenic solutions was 5-10%, and their temperature was maintained constant accurate to ± 2 Κ.

2. The character of chemical bonds, structure, and peculiarities of XF₃ and XF_5 (X = Cl, Br) hydrolysis

In accordance with the reactivity, the halide-fluorides XF_3 and XF_5 (X = Cl, Br) form the row²¹

$$ClF_3 > ClF_5 > BrF_5 > BrF_3$$
,

(2)and in some cases the chemical activity of these compounds significantly exceeds that of molecular fluorine.^{7,8} Some of their most important physical-chemical constants are given in Table 1.

Table 1. Chemicophysical properties of XF3 and XF5 molecules $(\mathbf{X} = \mathbf{Cl}, \mathbf{Br})$

Property	Value					
	ClF ₃	BrF_3	ClF ₅	BrF ₅		
Energy of X-F bond, kcal mol^{-1}	38.2	48.1	36.8	44.7		
Valence force constants						
X– F_{ax} , mdin/ Δ :	2.704	4.084	3.331	4.248		
X– F_{eq} , mdin/ Δ :	4.193	3.009	2.991	3.423		
Dipole moment, D	0.557	1.190	-	1.510		
T _{fus} , K	196.8	281.9	181.0	212.7		
T _{boil} , K	284.9	398.9	260.3	314.5		
$\Delta H_{\rm fus}$, kcal mol ⁻¹	1.82	2.88	0.383	1.76		
$\Delta H_{\rm vap}$, kcal mol ⁻¹	6.58	10.24	5.74	7.31		
$\Delta S_{\rm vap}$, e.u.	23.1	25.7	21.8	23.3		
ΔI_{298}^0 (g), kcal mol ⁻¹	-39.35	-61.1	-57.7	-106.2		
Vapor pressure (300 K), Torr	1530.6	13.5	2855.0	390.3		

Among the diversity of molecules of XY₃ type, ClF₃ and BrF₃ hold a special position due to their unusually plane T-shape structure. So, for ClF₃ this structure is stipulated by the transition of one of 3p-electrones in Cl atom to 3*d*-orbital (Cl*): $Cl^{\circ} \rightarrow$ $\rightarrow 3s^2 3p_x^2 3p_y^2 3p_z^1$; Cl* $\rightarrow 3s^2 3p_x^2 3p_y^1 3p_z^1 3d_{xy}^1$. This results in a trigonal pyramid $sp^{3}d$ (XY₃E₂-configuration) consisting of three atoms of fluorine and two disconnected electron pairs with Cl atom at the center (Fig. 1a).

Fig. 1. Geometry of XF₃ (a) and XF₅ (b) molecules. ClF₃ - $\beta = 87.29^{\circ}$, $R_1 = 1.698 \Delta$, $R_2 = 1.598 \Delta$; $BrF_3 - \beta = 86.13^{\circ}$, $R_1 = 1.810 \Delta$, $R_2 = 1.721 \Delta$; $ClF_5 - \beta = 86.0^\circ$; $R_1 = 1.571 \Delta$, $R_2 = 1.669 \Delta$; BrF₅ – $\beta = 84.13^\circ$, $R_1 = 1.774 \Delta$, $R_2 = 1.721 \Delta$.

In ClF₃ and BrF₃ molecules two fluorine atoms are positioned axially, two disconnected pairs (E_1 and E_2) and the third fluorine atom – equatorially. In this case $\angle F_{ax}$ -Cl- $F_{eq} = 87.29^{\circ}$, $R(Cl-F_{ax}) = 1.698 \Delta$, $R(Cl-F_{eq}) = 1.598 \Delta$ (gas),²² $\angle F_{ax}$ -Cl- F_{eq} =86.59°, $R(Cl-F_{ax})$ =1.716 Δ , $R(Cl-F_{eq})$ = 1.621 Δ (solid).²³ For Br trifluorides $\angle F_{ax}$ -Br- $R(Br-F_{ax}) =$ $F_{eq} = 86.13^{\circ}$, $= 1.810 \Delta, \quad R(Br-F_{eq}) = 1.721 \Delta \quad (gas)^{24}; \quad \angle F_{ax} - Br - F_{eq} = 86.27^{\circ}, \quad R(Br-F_{ax}) = 1.85 \Delta, \quad R(Br-F_{eq}) = 1.72 \Delta$ (solid).²⁵ The above data indicate that the T-shape structure of XF_3 molecules both in the gas^{22,24} and solid^{23,25} phase is slightly distorted ($\angle F_{ax}$ -X- $F_{ax} \cong 175^{\circ}$), and the valence bonds' lengths and angles well correspond to ideas of significant repulsion between disconnected electron pairs.²⁶

The ClF₅ and BrF₅ molecules have a structure of tetragonal pyramid, which, for example, for ClF₅ is due to the transition of two electrons from the *p*-orbital to *d*-orbital. On the transition of one electron, the conditions appear which are equivalent to those needed to produce CIF₃: Cl° \rightarrow 3s²3p_x²3p_y²3p_z¹; Cl* \rightarrow 3s²3p_x²3p_y¹3p_z¹3d. On transition of the second electron, the conditions appear that favor the formation of five bonds with F-atoms: $Cl^{**} \rightarrow 3s^2 3p_x^1 3p_y^1 3p_z^1 3d_{xy}^1 3d_{yz}^1$. This results in a tetragonal pyramid sp^3d^2 (XY₅E-configuration), four F atoms of which are located in the corners of the square forming the foot plane with the fifth F-atom and a pair of unbound electrons (E) being on the axes (Fig. 1b). Structure parameters of the XF_5 (X = Cl, Br) molecules deduced from microwave spectra^{27,28} are as follows: $R(Cl - F_{ax}) = 1.571 \Delta$, $R(Cl - F_{ax}) = 1.571 \Delta$ F_{eq} = 1.669 Δ , $\angle F_{ax}$ -Cl- F_{eq} = 86.0°; $R(Br-F_{ax})$ = 1.774 Δ , $R(Br-F_{ea}) =$

= 1.721 Δ , $\angle F_{ax}$ -Br- F_{eq} = 84.13°. As is seen from the above structure data, the configuration of distorted octahedron is realized for XF_5 (X = Cl, Br) molecules.² This is caused by the fact that the pair of unbound electrons positioned along the forth order axis interacts in different manner with the binding electron pairs. This results in a slight change of angles between the binding pairs and the length of the neighbor bonds stretches because the repulsion of *cis*-electron pairs is stronger than that for a pair in the *trans*-configuration. As a result, the axial bond in XF₅ becomes stronger than the equatorial ones. The influence on Cl and Br atoms therewith becomes relatively weaker, because they are less electronegative as compared with F.^{12,30} The nonempirical calculations by the Hartry–Fock–Ruthan method^{12,31} demonstrate that the bond in Br fluorides is more polar than in similar compounds of Cl. So, the complete population of Br and F atoms are 0.59 and 1.41, respectively, and the center-of-mass is shifted by 0.61 a.u. from the Br-F bond center to F atom.

The Cl and Br trifluorides and pentafluorides react practically with all elements of the periodic table except the elements of the VIII B group and some platinum metals.^{7,8,32} These compounds demonstrate particularly active interaction with the atmospheric moisture. The course of hydrolysis reactions is a bit different for XF₃ and XF₅ (X = Cl, Br) and depends on the reagents composition.³³ For example, hydrolysis of Cl trifluoride and pentafluoride at an excess of moisture content (ClF₃:H₂O, ClF₅:H₂O ≤ 2:3) follows the schemes (3–4)

$$4\text{ClF}_3 + 6\text{H}_2\text{O} \rightarrow 12\text{HF} + 2\text{Cl}_2 + 3\text{O}_2,$$

(3) (4)

(6)

(9)

$$4\text{ClF}_5 + 9\text{H}_2\text{O} \rightarrow 18\text{HF} + \text{ClO}_2\text{F} + \text{ClO}_3\text{F} + 2\text{ClO}_2,$$

whereas at the excess of ClF_3 and ClF_5 the hydrolysis process is described by reactions (5)–(6)

$$2ClF_3 + 2H_2O \rightarrow 4HF + ClO_2F + ClF,$$
(5)

$$ClF_5 + 2H_2O \rightarrow 4HF + ClO_2F.$$

In the course of (4)–(6) reactions the chlorylfluoride is produced, which, in its turn, is slowly hydrolyzed thus producing HF, ClO₂, and $O_2^{33,34}$

$$4\text{ClO}_2\text{F} + 2\text{H}_2\text{O} \rightarrow 4\text{HF} + 4\text{ClO}_2 + \text{O}_2.$$
(7)

It should be noted that in the process of reactions (4) and (7) a fraction of ClO_2 molecules can decompose into Cl and O_2 . O_2 therewith presumably oxidizes ClO_2F to inert (as compared with other Cl oxyfluorides) ClO_3F .

Hydrolysis of the chemically active Cl monofluoride (reaction (5)) at excess of H₂O proceeds similarly to (3), at the excess of ClF it yields HF, Cl₂, and ClO₂ $F^{7,12}$

$$5\text{ClF} + 2\text{H}_2\text{O} \rightarrow 4\text{HF} + 2\text{Cl}_2 + \text{ClO}_2\text{F}, (8)$$

and chlorylfluoride is then hydrolyzed following scheme (7).

Besides the chemically stable compounds, it is possible the formation, as intermediates in the hydrolysis, of unstable ClOF (enthalpy of formation $\Delta H_{298}^0 = -$ 46.1 kJ·mol⁻¹)¹², which, in its turn, can decompose into Cl monofluoride and O₂³⁴ according the reaction

$$2\text{ClOF} \rightarrow 2\text{ClF} + \text{O}_2,$$

and of the structurally nonrigid complex (an adduct) of $\mathrm{ClF}_3.\mathrm{HF}.$

In the process of Br trifluoride hydrolysis, the HF, HBr, Br₂, and O₂ molecules are produced. As in the case with the Cl fluorides, a possibility exists of forming of an unstable BrOF compound which then decomposes following the scheme (9) into BrF and O₂.

Reaction of BrF_5 with water proceeds similarly to that according to scheme (6) with the formation of

bromylfluoride with the consequent hydrolysis of the latter according to scheme (7). But, unlike ClF_5 hydrolysis, the chemically active $BrOF_3$ can play the role of intermediate product in the interaction between BrF_5 and water

$$BrF_5 + H_2O \rightarrow 2HF + BrOF_3, \tag{10}$$

which hydrolyzes much faster than BrF5

$$BrOF_3 + H_2O \rightarrow 2HF + BrO_2F \tag{11}$$

and therefore it is not normally found among the products of BrF_5 hydrolysis. 32

3. Results and discussion

ClF₃ and BrF₃ molecules

The ClF_3 and BrF_3 molecules (point symmetry $C_{2\nu}$) have six normal nondegenerate vibrations of the symmetry types

$$\Gamma_{\rm vib} = 3A_1 + 2B_1 + B_2, \tag{12}$$

active both in the IR and Raman spectra.

Table 2. Experimental frequencies (cm⁻¹) and their interpretation in the IR-spectra for XF₃ (X = Cl, Br) molecules in gas phase (T = 293 K) and in Kr (*L*Kr, T = 130 K) and Xe (*L*Xe, T = 180 K) cryogenic solutions

CF ₃			1	BrF ₃		Vibration type
Solution	Gas	Gas	Solution	Gas	Gas	and interpretation
in <i>L</i> Kr		Ref. 35	in LXe		Ref 36	
1050			10.65		Ref. 50	a (1)
1959	-	_	1805	-	—	$2v_1 + v_2(A_1)$
1800	_	_	1620	_	_	$v_1 + v_4 + v_5(A_1)$
1793	-	_	15/1	-	—	$2v_1 + v_3(A_1)$
1701	_	_	1510	_	-	$v_1 + v_3 + v_4 (A_1)$
1/49	_	-	-	_	-	
1010	1517	_	1504	_	_	$v_2 + v_4 + v_5(A_1)$
1510	1511	-	1202	_	-	$v_2 + v_4 + v_6(A_2)$
1319	1501	-	1225	1242	1240	$v_2 + v_3 + v_4(A_1)$
1495	1400	1400	1333	1342	1540	$2V_1(A_1)$
1460	1490	1400	1229	1200	1287	$\mathbf{y}_{i} + \mathbf{y}_{i}(\hat{\mathbf{A}}_{i})$
1/37	1450	1450	1201	1290	1207	$v_1 + v_4(A_1)$
1330	1343	1338	-	-	_	$2v_2 + v_4(\hat{A}_1)$
1261	1274	1273	1209	1217	_	$2v_3 + v_4(21)$
1214	1225	1273	1156	1165	1162	$v_1 + v_2(A_1)$ $v_2 + v_4(\hat{A}_1)$
1205	1213	1225	1149	1105	1102	v2 + v4 (211)
1050	_	_	_	_	_	$2v_3 + v_5(\hat{A}_1)$
1015	1024	1022	901	_	_	$v_3 + v_4(\hat{A}_1)$
948	958	957	884	_	_	$v_2 + v_5(\hat{A}_1)$
839	850	845	706	_	_	$v_2 + v_3(A_1)$ $v_2 + v_2(A_1)$
						or $2\nu_5(\hat{A}_1)$
748	756	761	677	683	682	$v_1(\hat{A}_1) v_1(X - F_{aa})$
735	739	741	667	670	668	•1(11), • (11 1 eq)
	712	711				
706	709	704				
696	704	701	615	619	621	
691	700	698	607	615	614	$v_4 (\hat{A}_1),$
684	697	694	598	605	604	v_{as} (X–F _{ax})
674	693	691				
	691					
647	653	-	-	-	-	$2v_3(\dot{A}_1)$
527	525	535	540	558	557	$v_2(A_1),$
510	516	518	533	547	547	$v_s(X-F_{ax})$
			354	360	359	
430	433	434	335	352	350	$v_5(B_1),$
				340	342	$\delta (X-F_{eq})$ on
						plane

362	364	364	-	_	242	$v_6(B_2), \delta(\mathbf{X}, \mathbf{E})$ off
						plane
327	331	332	-	-	242	$v_3(A_1),$
315	318	319	-	-		$\delta \left(X - F_{ax} \right)$

Note: v is for the valence vibration, δ is for the deformation one; "s" denotes symmetric and "as" is the antisymmetric vibration.

The gas-phase XF₃ vibrational spectra (X = Cl, Br) were studied in Refs. 35 and 36; those in condensed state and under conditions of matrix confinement – in Refs. 37–40. The authors of these papers have performed an assignment of the ClF₃ and BrF₃ fundamental frequencies and defined a set of valence force constants. Attempts to interpret some second-order transition bands in the IR spectra of gaseous ClF₃ and BrF₃ were made in Refs. 35 and 36. Table 2 lists the frequency values of the IR absorption bands of the gas-phase ClF₃ and BrF₃ as well as in Kr and Xe cryogenic solutions that we have measured ourselves. Those taken from Refs. 35 and 36 are presented for a comparison.

A portion of IR spectrum for gas-phase ClF_3 and that in Kr cryogenic solution for the frequency range of vibration of $(Cl-F)_{ax}(v_4)$ bond is shown in Fig. 2.

Fig. 2. A fraction of the IR absorption spectrum of ClF₃ molecule in the gas phase (*a*) and Kr cryogenic solution (*b*) near the v_4 (B_1) mode.

As seen from Table 2, we have managed to record and interpret more than 30 (ClF₃) and 20 (BrF₃) vibrational bands in the frequency range from 2000 down to 300 cm⁻¹ including the third-order transition bands. It is noteworthy that the shapes of asymmetrical vibration band of the axial bond $v_4(B_1)$ of the gas-phase ClF₃ and BrF₃ are a superposition of several overlapping bands with the frequencies 712, 709, 704, 700, 697, 693, and 691 cm⁻¹ (ClF₃) and 619, 615, and 605 cm⁻¹ (BrF₃). This fact agrees well with the data from Refs. 35 and 36, the authors of which also observed a complicated structure of v_4 band consisting of several bands with the frequencies 711, 704, 701, 698, 694, and 691 cm⁻¹ (in ClF₃) and 621, 614, and 604 cm⁻¹ (in BrF₃). The complicated structure of the v₄ band is, in our opinion, due to Coriolis interaction typical for T-shape molecules of the C_{2v} symmetry.⁴¹

For the T-shape XY₃ molecules, three types of Coriolis interaction among the fundamental vibrations are possible: (A_1, B_1) , (A_1, B_2) , and (B_1, B_2) . The latter interaction type is a consequence of the fact that the XY₃ (C_{2v}) molecules do not have fundamental vibrations of A_2 symmetry. The rotation of a molecule about this' symmetry axis results in the $v_6(B_2)$ vibration excited by the Coriolis force arising at $v_5(B_1)$ vibration. Since the frequencies of these vibrations are close to each other, a noticeable interaction arises between these vibrational states. The $v_3(A_1)$ and $v_6(B_2)$ vibrations that have close frequencies can also interact rather strongly on their rotation about the axis of central moment of inertia. The strongest interaction, in our opinion, can take place between $v_1(A_1)$ and $v_4(B_1)$ vibrations that have close frequencies at rotation about the axis of maximum moment of inertia.

In contrast to the gas phase, in cryogenic solutions sufficiently well resolved bands at the frequencies of 706, 696, 691, 684, 674 and 615, 607, 598 cm^{-1} and the ratios of 0.25:0.11:0.07:1.0:0.35 and intensity 0.77:1.0:0.46, respectively, are observed instead of complicated IR absorption spectra of ClF3 and BrF3 near the $v_4(B_1)$ mode. The splitting observed in the v_1 , v_2 , and v_5 bands, as in the v_4 band, is also due to the Coriolis interaction. It should be noted that the v_4 band strength in ClF₃ and BrF₃ IR spectra is anomalously high (by more than an order of magnitude) as compared with the v_1 band strength and about two orders of magnitude higher than the intensity of other fundamental bands. This fact is evidently characteristic of XY₃ (C_{2v}) molecules of the T-shape structure.

As in the case with other polyatomic molecules,^{13–15} the gas-to-cryogenic solution transition is accompanied by a low-frequency shift of ClF_3 and BrF_3 vibrational bands. Among the fundamental bands the maximum shift is characteristic of the valence vibration bands. At the same time such a shift of the deformation vibrational bands is almost a half as low. The shift of combination vibrational bands and overtones achieves several tens of wavenumbers. The additivity that approximately holds allows one to hope that the values of unharmonicity constants, calculated for ClF_3 and BrF_3 solutions in liquid noble gases, will be close to the corresponding values of X_{ik} in the gas phase.

Taking into account these circumstances and based on the obtained spectroscopic evidences of the frequency position of a series of combination bands and overtones, we have computed the unharmonicity constants for some ClF₃ and BrF₃ vibrations: $X_{33} = -7.0 \text{ cm}^{-1}$, $X_{11} = -5.0 \text{ cm}^{-1}$, $X_{25} = -9.0 \text{ cm}^{-1}$ (ClF₃) and $X_{11} = -6.0 \text{ cm}^{-1}$, $X_{25} = -10.0 \text{ cm}^{-1}$ (BrF₃). Evaluation of X_{ik} for other vibrations, in particular, X_{4k} or X_{i4} (*i*, k = 1, 2, ..., 6) faces some difficulties because of the v₄ band splitting due to the Coriolis interaction.

ClF₅ and BrF₅ molecules

The pentafluorides of Cl and Br belong to C_{4v} point symmetry group and are characterized by nine normal vibrations of the symmetry types

$$\Gamma_{\rm vib} = 3A_1 + 2B_1 + B_2 + 3E. \tag{13}$$

In the IR absorption spectrum of these molecules only vibrations of $A_1(v_1, v_2, v_3)$ and $E(v_7, v_8, v_9)$ symmetry are active, in Raman spectrum – all nine vibrations are active.

The vibrational spectra of ClF₅ and BrF₅ in gas and liquid phases were studied in Refs. 37, 42–44. The authors of Refs. 40, 45, and 46 have obtained evidences on spectra of these molecules isolated in matrices of the inert gases. In the above cited works, the fundamental bands of ClF₅ and BrF₅ were interpreted^{42,44} and the values of vibration amplitudes and Coriolis constants computed. Isotopic frequency shifts of some vibrational bands were determined in Refs. 45 and 46.

The frequencies, relative intensities, and identification of the observed IR absorption bands of these molecules in the gas phase and in cryogenic solutions in Kr and Xe are presented in Tables 3 and 4. The frequencies of IR absorption bands for gas-phase ClF_5 and BrF_5 from Refs. 42 and 43 are also presented in these tables.

A portion of IR spectrum of ClF_5 cryogenic solution in Xe within the region of the second- and third-order transitions is depicted in Fig. 3.

It follows from the data given in Table 3 that we have managed to record more than 50 (ClF₅) and 40 (BrF₅) vibrational bands in the IR absorption spectrum of ClF₅ and BrF₅ cryogenic solutions in liquid Xe in the frequency range from 2300 to 200 cm⁻¹. At the same time, the IR spectra of their solutions in liquid Kr are characterized by smaller number (32 for ClF₅ and 26 for BrF₅) of absorption bands within the ranges 1700–300 and 1400–215 cm⁻¹, respectively, what can be attributed to worse solubility of these interhalides in liquid Kr as compared with liquid Xe.

Similarly to gas-phase absorption spectra of ClF₅ and BrF₅, the bands of the v_1 , v_2 , and v_3 fundamental vibrations (symmetry A_1) as well as v_7 , v_8 , and v_9 bands (symmetry E), allowed by the selection rules for C_{4v} -configurations, are observed in the spectra of cryogenic solutions of these species in liquid Xe within the above-mentioned frequency ranges.⁴⁷ No serious problems arise in assigning of the observed fundamental bands of BrF5 both in gas phase and cryogenic solutions. At the same time, in the case of BrF_5 only three fundamental vibrations with the frequencies of 718.7, 537.0, 516.0, and 476.5 cm⁻¹ (liquid Xe); 720.0, 540.0, 518.0, 476.5 cm⁻¹ (liquid Kr); and 731.8, 541.0 cm⁻¹ (gas phase) can be interpreted unambiguously. Group identification of the fundamental vibration bands in the frequency ranges of 710 and 480 cm⁻¹ was performed. As to the combination vibrations and overtones of ClF5 and BrF₅, only a half of them can be interpreted. For other bands of the second- and third-order transitions only group interpretation is possible. Note that the above bands may be assigned to some transitions only on the basis of Raman spectra of the above species dissolved in liquid noble gases.

Table 3. Parameters of absorption bands (cm⁻¹) for ClF₅ molecules in the gas phase and in cryogenic solutions in Xe and Kr (*L*Xe and *L*Kr, respectively)

Solution in <i>L</i> Xe	Solution in <i>L</i> Kr	Gas	Gas Ref. 42	$A_{\rm rel}$	Vibration type and interpretation
1	2	3	4	5	6
2251	-	2199	2202	0.3	3v ₇ (E)
2188				0.8	$v_1 + 2v_7 (A_1)$
					$2v_7 + v_8 + v_9 (E)$
1932	-	1938	1940	0.2	$v_2 + 2v_7(A_1)$
1927					

1880					
1000	_		_		
1859	-	1871	-	0.8	$v_1 + v_6 + v_7 (E)$
1854	_	_	_		
1011		1005	1000	0.2	a (b)
1811	-	1825	1828	0.3	$2v_2 + v_7(A)$
1786	_	1794	_	0.2	$v_1 + 2v_2(A_1)$
1710	1710	1706	1704	0.2	·1 · =·2 (·1)
1/10	1/12	1/06	1/04	0.3	$v_2 + v_3 + v_7(E)$
1701	1704				$2v_2 + v_7(A)$
					2,3,1,7,(1)
					$2v_7 + v_9(E)$
1684	1687	_	_	0.2	$\mathbf{y}_2 + \mathbf{y}_2 + \mathbf{y}_2(\mathbf{A})$
1004	1007			0.2	$v_3 + v_7 + v_8(z_1)$
					$2v_3 + v_7(A)$?
1492	1494	1517	1500	1.0	$\mathbf{y}_{2} + \mathbf{y}_{2} + \mathbf{y}_{3} (\hat{\mathbf{\lambda}}_{1} + \hat{\mathbf{\lambda}}_{2} + \hat{\mathbf{\lambda}}_{3})$
1472	1474	1517	1500	1.0	$v_3 + v_7 + v_9 (A_1 + A_1 + A_2)$
1434	1437	1449	1444	10	$2v_7(A)$ ³⁵ Cl
1411	1412	_	_	35	$\mathbf{y}_{1} + \mathbf{y}_{2} \cdot (\mathbf{A})$
1411	1412			5.5	$v_1 + v_7(A)$
					$2v_7(A)$ ³⁷ Cl
1306	1307	1316	1322	10	$y_{-} + 2y_{-}(4)$
1300	1307	1510	1322	10	$v_7 + 2v_9(A)$
1290	1291				
1255	1256	1260	1274	15	$v_2 + v_7 (\mathring{A})$
1200	1230	12.00	12/1	10	v2 + v7(21)
1242	1244	1249			$v_1 + v_2(A_1)$
					$\mathbf{v}_{\tau} + \mathbf{v}_{\sigma}(\mathbf{A})$
			1000		\mathbf{v} / \pm \mathbf{v} 8 (A)
		1213	1220	15	$v_1 + v_3(A_1)$
1199	1203				$y_2 + y_2(\lambda)$
1105	1100				$v_3 + v_7 (A)$
1185	1186				$v_4 + v_7 (\dot{A})$
					<u> </u>
					$v_1 + v_8(A)$
		1213	1220	15	$v_7 + v_8(\tilde{A})$
1199	1203				$\mathbf{y}_{1} + \mathbf{y}_{2} (\mathbf{\hat{A}}_{2})$
11//	1205				$v_1 + v_3(A_1)$
1185	1186				$v_3 + v_7 (A)$
					$v_4 + v_7(A)$
					$v_1 + v_8(A)$
1076	1077	1094	1000	0.1	24 (1)
1070	1077	1064	1000	0.1	$2V_2(A_1)$
1054	1056	1060	_	2.0	$v_5 + v_7 (Å)$
1017	1020	1022	1028	1.0	
1017	1020	1025	1020	1.0	$v_7 + v_9(A)$
1014					$v_2 + v_8(A)$
					$v_2 + v_3(A_1)$
998	_	_	_	0.4	$v_1 + v_9 (A)$
000				0.2	
900	_	-	_	0.2	$v_3 + v_4(A_1)$
977	980	981	981	3.0	$2v_3(A_1)$
072					
912					$V_3 + V_8(A)$
875	876	978	_	0.5	$v_3 + v_6 (\hat{A}_1 + \hat{A}_1 + \hat{A}_2)$
025	027	010	040	2.0	
833	037	042	840	5.0	$V_2 + V_9(A)$
782	784	785	786		$v_3 + v_9 (A)$
744				60	
/ 44	_	_	_	00	$V_8 + V_9(A)$
737	-	-	-		$v_4 + v_9 (\mathring{A})$
7107	720.0	721.0	720	1000	
/10./	720.0	/31.0	152	1000	$V_7(A)$, $V_{as}(CI-F)_{ax}$
713.5					$v_1(\hat{A}_1), v_2({}^{35}Cl-F)_{eq}$
710.0	700.0			200	37
/10.0	/08.9	-	-	390	$\nu_1(A_1), \nu_s({}^{S'}Cl-F)_{eq}$
707 5					(h) = (37C1E)
101.5					$V7(A)$, $V_{as}(CI-I)_{ax}$
617	618	_	_	0.5	$v_5 + v_0(A)$
(07	610			0.0	• 3 • • 9 (21)
607	608				
597	601				
587	500	608	508	1.0	$2\mathbf{u}(\mathbf{d})$
567	390	008	590	1.0	$2V9(A_1)$
584					
537	540	541	541	6.0	$v_2(\dot{A}_1) v_1(C_1-F)$
551	510	511	511	0.0	$v_2(n_1), v_3(c_1 n_{ax})$
516	518				
491.5	494	_	_	70	$V_2(\hat{A}_1)$
.,					
					$O_{s}(F_{ax} - CI - F_{ax})$
481	482	485	486	180	$V_2(\hat{A}_1)$
101	102	105	100	100	37 = 37
					$\delta_s (F_{ax} - Cl - F_{ax})$
					$v_{\circ}(A) \delta_{\circ}(E_{c}-35C_{c}-E_{c})$
					, o (1), oas (1 eq (1 1 ax)
					off plane
476	477	_	_	45	$v_{\alpha}(\mathbf{A}) \delta (\mathbf{F}^{37}\mathbf{C} + \mathbf{F})$
170	. , ,			15	$v_{\delta}(1)$, $v_{as}(1) = CI - Car (1)$
					off plane
200	301	302	302	200	$u_{\rm E}(\Lambda) \delta (E C E) = -$
ムフプ	301	303	302	200	$v_9(A)$, $o_{as}(\Gamma_{ax}-CI-\Gamma_{ax})$ on
					plane

Table 4. Parameters of the absorption bands (cm⁻¹) of BrF₅ molecules in the gas phase and in cryogenic solutions in Xe and

Sh.Sh. Nabiev

Kr (<i>L</i> Xe and <i>L</i> Kr, respectively)								
Solution	Solution	Gas	Gas	$A_{\rm rel}$	Vibration type and			
in LXe	in <i>L</i> Kr		Ref. 44		interpretation			
2134	_	-	_	_	$3v_7 + v_9(E)$			
1968	-	1991	1995	0.01	$2v_1 + v_7 (Å)$			
1955					$2v_7 + v_8 + v_9(E)$			
1944	_	_	_	0.01	$v_1 + 2v_7 (A_1)$			
1896	-	1915	1920	0.02	$3v_7(E)$			
1862	-	_	_	0.08	$v_2 + 2v_7 (A_1)$			
1777	-	1797	1800	0.06	$2v_2 + v_7 (Å)$			
1754	-	1767	1770	0.017	$v_2 + v_4 + v_7(E)$			
1712	-	1730	1732	0.08	$2v_4 + v_7 (Å)$			
1693	-	-	-	0.12	$2v_7 + v_8$			
1593	-	-	-	0.03	$v_2 + v_3 + v_7 (E)$			
1495	-	_	_	0.01	$2v_7 + v_9(E)$			
1402	-	_	_	0.05	$\nu_3 + \nu_7 + \nu_8 (\mathring{A})$			
1345	1348	1365	1368		$2v_3 + v_7(Å)$			
1334	1335	1330	1324	13.3	$2v_1(\dot{A}_1)$			
1321	1324	1279			$\nu_1 + \nu_7 (\mathring{A})$			
1257	1260				$2\nu_7(A)$			
1249	_	_	_	0.04	$v_1 + v_2(A_1)$			
1196	1199	1210	1211		$v_3 + v_7 + v_9 (\dot{A}_1 + \hat{A}_1 + \hat{A}_2)$			
1159	1164	1171	1175	27	$v_2 + v_7 (\mathring{A})$			
					$v_4 + v_7 (Å)$			
1080	1081	1090	_	0.15	$v_1 + v_8 (\mathring{A})$			
1044	1047	1054	_	0.24	$v_7 + v_8 (Å)$			

1029	1032	1041	1042		$v_1 + v_3 (\dot{A}_1)$
1020	1023	1030	1032	1.1	$v_6 + v_7 (Å)$
990	994	1003	998		$v_3 + v_7 (Å)$
					$v_2 + v_3 (\dot{A}_1)$
955					$v_2 + v_8 (Å)$
920	-	_	_	0.018	$v_4 + v_8 (\mathring{A})$
914					$v_1 + v_9 (\mathring{A})$
					$v_3 + v_4 (\hat{A}_1)$
903	-	_	-	0.09	$v_5 + v_7 (\mathring{A})$
855	859	870	874	0.3	$v_7 + v_9 (\mathring{A})$
798	801	806	807	0.2	$2v_8(\mathring{A})$
					$v_2 + v_9 (\mathring{A})$
765	766	770	771	0.6	$v_4 + v_9 (\mathring{A})$
758	761	767	750	0.4	$v_3 + v_8 (Å)$
709	711	716	716	3.2	$2v_3(\dot{A}_1)$
677	680	683	683	28	$v_1(\dot{A}_1), v_s(Br-F)_{eq}$
663	669	673	674	0.1	$v_3 + v_6 (\dot{A}_1 + \hat{A}_1 + \hat{A}_2)$
634	637	645	644	1000	v_7 (Å), v_{as} (Br–F) _{ax}
592	595	601	602	0.8	$v_3 + v_9 (Å)$
582	584	588	587	4.8	$v_2(\dot{A}_1), v_s(Br-F)_{ax}$
505	510	512	510	1.7	$v_5 + v_9 (\mathring{A})$
462	465	470	473	1.4	$2v_9(\dot{A}_1)$
412	414	416	415	41	$v_8(A), \delta_{as}(F_{eq}-Br-F_{ax})$
					off plane
358	360	363	369	75	$v_3(\dot{A}_1),$
					$\delta_s (F_{ax}-Br-F_{ax})$
232	233	≅235	237	2.0	$v_9(A)$, $\delta_{as}(F_{ax}-Br-F_{ax})$ on
					plane

Fig. 3. A portion of the IR absorption spectrum of a cryogenic solution of CIF5 in Xe in the region of the second- and third-order transitions.

As seen from Table 3, the most intense absorption bands of ClF₅ cryogenic solution in Xe at the frequencies of 718.7, 713.5, 710.0, and 707.5 cm⁻¹ belong to v₁ and v₇ vibrations of its two isotopes with the intensity ratio $[A_1(^{35}\text{ClF}_5, ^{37}\text{ClF}_5) + A_7(^{37}\text{ClF}_5)] : [A_7(^{35}\text{ClF}_5)] = 0.39$. The relative intensity of 707.5 cm⁻¹ band was estimated to be $\cong 23\%$ of that of the v₇(^{35}\text{ClF}_5) band, and the total intensity of the v₁(^{35}\text{ClF}_5, ³⁷\text{ClF}_5) bands at the frequencies of 710.0 and 713.5 cm⁻¹ to be 15% of the same v₇(^{35}\text{ClF}_5) band intensity. The latter value agrees with the data from Ref. 44 ($\cong 20\%$), obtained from the IR absorption spectrum of the gas-phase ClF₅. Similar situation occurs for the bands at 491.5, 481.0, and 472.5 cm⁻¹ assigned to the v₃ and v₈ vibrations in the ³⁵ClF₅ and ³⁷ClF₅ molecules. In this case, the intensity ratio $[A_3(^{37}ClF_5)]:[A_8(^{35}ClF_5)] = 0.13$ while the summed relative intensities $A_3(^{35}ClF_5, ^{37}ClF_5)$ and $A_8(^{35}ClF_5, ^{37}ClF_5)$ are 90 and 205, respectively, and their ratio equals 0.44. The value of A_8 obtained also agrees with that (190) found in Ref. 44, but their value for A_3 is 30. It should be noted that the authors of Ref. 42 observed only one band within the range near 480 cm⁻¹ in the IR-spectrum of gas-phase ClF₅, which they assigned to the $v_3(A_1)$ vibration.

In the case of BrF₅ (Table 4) the intensity ratio $[A_1 + A_7]:[A_7]$ sharply differs from that of ClF₅; the values A_3 and A_8 are 75 and 41 at $[A_3]:[A_8] = 1.83$. The value of A_3 determined from the spectra of cryogenic solutions well

agrees with that (70) from Ref. 44, but the corresponding value of A_8 differs and equals to 20.

Our estimates of integral absorption coefficients within the most intense $v_7(E)$ band of ${}^{35}\text{CIF}_5$ and BrF_5 placed into the medium of liquid noble gases gave sufficiently large values and equal to $(370 \pm 50) \cdot 10^{-8}$ and $(325 \pm 60) \cdot 10^{-8} \text{ cm}^2 \cdot \text{molec}^{-1} \cdot \text{s}^{-1}$, respectively.

A comparison of frequencies of fundamental vibrations in gas-phase ClF5 and BrF5 with these in spectra of their cryogenic solutions in Kr and Xe has shown that the band of antisymmetric vibration $v_7(E)$ experiences the maximum low-frequency shift. The shift values are 11.8 and 13.1 cm⁻¹ (ClF₅); 8.0 and 11.0 cm⁻¹ (BrF₅) for liquid Kr and Xe, respectively. The shift for v_2 band is somewhat smaller: 1.0 and 4.0 cm⁻¹ (ClF₅); 4.0 and 6.0 cm⁻¹ (BrF₅); the shifts of v_1 , v_3 , v_8 , and v_9 bands of BrF₅ are 3.0, 3.0, 2.0, and 2.0 cm^{-1} (in liquid Kr) and 6.0, 5.0, 4.0, and 3.0 cm⁻¹ (in liquid Xe), respectively. Almost all uniquely interpreted components of the v7 band undergo strong shift (up to 25 cm⁻¹), while combination bands and overtones with the participation of other quanta undergo somewhat smaller shifts. The frequency shifts of other CIF5 fundamental bands as well as these of transitions of higher orders are an open question due to the lack of uniqueness in their assigning to one or another vibrational transition. Like in the case with ClF₅ and BrF₅, the anharmonicity constants X_{ik} (cm⁻¹) for some ClF₅ and BrF₅ vibrations were calculated based on the frequency values obtained for some combination vibrations and overtones.

$$X_{22} = -3; \quad X_{33} = -6; \quad X_{77} = -3.4;$$

 $X_{12} = -5; \quad X_{27} \cong -1 \quad (\text{CIF}_5);$ (14)
 $X_{12} = -10; \quad X_{33} = -8; \quad X_{18} = -9; \quad X_{78} = -2;$

$$X_{38} = -12; \quad X_{39} = -2; \quad X_{99} = -3 \quad (BrF_5).$$
 (15)

There occur difficulties in the X_{ik} determination for other ClF₅ and BrF₅ vibrations because of ambiguity in their assigning to a definite vibrational transition.

The values of isotopic shifts Δv_i obtained for some ClF₅ vibrational bands are the following:

$$\Delta v_7 = 11.2, \ \Delta v_3 = 10.5, \ \Delta v_1 = 3.5, \ \Delta v_8 = 4.5 \ \mathrm{cm}^{-1}.$$
 (16)

Note that isotopic shifts of the ClF_5 fundamental vibrations were experimentally measured and reported in Refs. 45 and 46, the authors of which studied the ClF_5 IR spectra under conditions of matrix isolation. They have obtained the following values:

$$\Delta v_7 = 12.8$$
, $\Delta v_3 = 10.0$, and $\Delta v_8 = 3.3$ Ref. 46;
 $\Delta v_7 = 12.7$, $\Delta v_3 = 3.5$, and $\Delta v_1 = 4.5$ Ref. 45. (17)

As the presented data show, the Δv_i values obtained by us rather well agree with the corresponding values from Ref. 46 as well as with Δv_1 and Δv_7 values from Ref. 45. At the same time, the magnitude of Δv_3 from Ref. 45 is almost three times less than ours and that from Ref. 46. Possibly, this is due to spectral effects of matrix splitting.

Detailed analysis of the spectroscopic data obtained in this work for molecules ClF_5 and BrF_5 has pointed to some anomalies in relations of absorption band intensities, fundamental force constants, interaction constants, and so on. It is well known, that calculation of the vibrational bands intensities in the IR spectra of polyatomic fluorinecontaining molecules is usually based on empirical model of fluorine atom polar tensors of the form⁴⁸

$$D_{x}^{F} = \begin{pmatrix} \partial \delta_{x} / \partial x_{F} & \partial \delta_{x} / \partial y_{F} & \partial \delta_{x} / \partial z_{F} \\ \partial \delta_{y} / \partial x_{F} & \partial \delta_{y} / \partial y_{F} & \partial \delta_{y} / \partial z_{F} \\ \partial \delta_{z} / \partial x_{F} & \partial \delta_{z} / \partial y_{F} & \partial \delta_{z} / \partial z_{F} \end{pmatrix},$$
(18)

where p_i are the components of dipole moment transformed upon representation of the corresponding Cartesian displacement; x, y, and z are spatially fixed coordinates of the fluorine atom.

The polar tensor was slightly varied from one molecule to another (Refs. 44 and 48), and for the umbrella-shaped molecules of C_{4v} symmetry (including pentafluoride halides) it can be written⁴⁴ as

$$P_{\rm ax}^F = \begin{pmatrix} 0.21 & 0 & 0\\ 0 & 0.21 & 0\\ 0 & 0 & 0.90 \end{pmatrix} e \tag{19}$$

- for an axial F atom and

$$P_{\rm eq}^F = \begin{pmatrix} 0.25 & 0 & 0\\ 0 & 0.25 & 0\\ 0 & 0 & 1.00 \end{pmatrix} e \tag{20}$$

– for an equatorial *F* atom.

Here the diagonal elements are the derivatives of the dipole moment corresponding to F atom shift along two directions (perpendicular and along the bond).

Our analysis of the absorption IR spectra for fivecoordinate compounds in cryogenic solutions of noble gases has shown that the observed band intensities of the valence vibrations for ClF_5 and BrF_5 insignificantly correlate with the well-known relation for molecules of C_{4v} symmetry following from the model of local oscillations⁴⁹

$$[I(v_1) + I(v_2)] : [I(v_7)] \cong 1:4.$$
(21)

The calculations made in Ref. 44 for ClF₅ and BrF₅ molecules give the ratios 1:3.3 and 1:3.74, and some difference with the proportion (21) is due, in the opinion of the authors of Ref. 44, to "interference" of the deformation coordinates. This intensity ratio determined in Ref. 45 for ClF₅ is 1:17, whereas our data give 1:6.4 and 1:30 for ClF₅ and BrF₅, respectively. On substitution $I(v_3)$ into (21) the ratios become 1:11.1(CIF₅) and 1:13.3 (BrF₅); the former of these values well agrees with the data from Ref. 45 (1:11.0). The authors of Ref. 44 came to a conclusion that different values of the ratio (21) for calculated and experimentally obtained intensities for ClF₅ and BrF₅ fundamental absorption bands are first of all associated with the incorrectness of the force field model for these molecules. The authors of Refs. 30, 44, and 45 have noted that application of the polar tensors model to description of the X-F_{ax} and X-F_{eq} bonds (X = Cl, Br) is not exactly correct, because the effective charge on Fax is noticeably less than on F_{eq} . The calculation of dipole moment derivatives for ClF5 made in Ref. 45 as well as our estimates⁴⁹ have shown that in moving F_{ax} and F_{eq} along the bond, the difference between these derivatives is almost an order of magnitude ($\cong -0.1e$ and $\cong -1.0e$), whereas the dipole moment derivatives at Feq displacement

perpendicular to the bond are comparable in magnitude $(\cong +0.26e \text{ and } \cong +0.14e)$. For BrF₅, the dipole moment derivatives have not been calculated, but we estimate the situation with their magnitudes in Fax and Feq shifts along the bond as similar to the case with ClF₅. Therefore, we can argue in favor of the fact that X- F_{ax} (X = Cl, Br) bond by its electrooptical parameters significantly differs both from equatorial bond and from other bonds in five- or six-coordinate fluorides (PF5, SF5, and others), for which the tensor (18) was successfully used. Such a conclusion agrees with the results of quantumchemical calculations for electron-excessive interhalides^{12,50,51} and suggests that the bonds in XF₅ (X = Cl, Br) molecules can be classified into two categories:

- the bonds to which both the *s*- and *p*-orbitals of the central atom $(X-F_{ax} \text{ bond})$ contribute;

- the bonds with more ions along linear groups F-X-F formed exclusively by *p*-orbitals of the central atom (X-F_{eq} bonds).

The ClF₅ and BrF₅ electrooptical parameters can be discussed in a more detail only after reliable determination of their valence-force field, because we still have no final answer to this question. Various simplifying suppositions used in finding the force parameters have a particularly strong effect on the offdiagonal elements of the F-matrix.⁵⁰ The difference is observed not only in F_{ij} magnitudes, but also in their signs.^{12,30,46} A model of infrared intensities for ClF₅ and BrF₅ should take into account both the characteristic differences in X–F_{ax} and X–F_{eq} bonds and the contributions from unbounded electron pair and from nonrigid intramolecular regroupings. In the case of nonrigid regroupings in ClF₅ and BrF₅, a fast axial-equatorial exchange of F-ligands can take place, what is clearly demonstrated by the NMR-spectra.⁵²

In the case of five-coordinate bonds, the most probable mechanisms of intramolecular regroupings can be pseudorotations via configuration of trigonal bipiramid (TBP) and the tourniquet mechanism of F atoms exchange.⁵³ So, following the estimates made in Ref. 50, a barrier for pseudorotation in ClF5 via TBP-configuration (D_{3h}) is $\cong 80 \text{ kcal} \cdot \text{mol}^{-1}$, i.e., this mechanism of intramolecular regroupings may be eliminated from consideration as energetically disadvantageous. The tourniquet mechanism of F atoms exchange in pentafluoride halides was also treated⁵⁰ and, similarly to the above pseudorotation mechanism, was excluded from consideration based on corresponding calculations by Hartree-Fock method, which were made not for fivecoordinate XF₅ molecules, but for SH₆ and SF₆ molecules with two-exponent sp-basis.51 At the same time, the authors of Ref. 50 pay attention to a noticeable role of the polarization d-functions of the central atom and effects of electron correlation, in finding the barriers for intramolecular regroupings in fluorides of the elements from the IIIrd period. Our estimates^{30,54} have shown that if more complete bases are used and the effects of electron correlation are taken into account, a moderate height of the barrier for regrouping by tourniquet mechanism can be expected, which case, in our opinion, is most probable for ClF₅ and BrF₅. But the lack of direct *ab initio* calculations for the tourniquet mechanism potential surface as for other possible mechanisms of the ligands exchange in ClF5 and BrF_5 , as well as unavailability of reliable valence-force field for these compounds make the question on the contribution of nonrigid intramolecular regroupings to the formation of ClF_5 and BrF_5 infrared intensities still open, thus demonstrating the necessity of further study using not only spectroscopic but also the up-to-date physical methods of chemistry.

Acknowledgments

The author thanks L.P. Sukhanov for fruitful discussions.

References

1. V.B. Shevchenko, ed, *Chemical Technology of Irradiated Nuclear Fuel*, (Atomizdat, Moscow, 1971), 448 pp.

2. F.J. Rahn, A.G. Adamantiades, J.E. Kenton, et al., *Guide to Nuclear Power Technology* (Wiley Interscience, New York, 1984), Vol. 2, 731 pp.

3. G.H. Makeev, V.B. Sokolov, and B.B. Chaivanov, *Inorganic fluorooxidants*, in: *Plasma Chemistry*, B.M. Smirnov, ed., (1977), 731 pp.

4. B.D. Stepin, Usp. Khim. 56, No. 8, 1273 (1987).

Sh.Sh. Nabiev, Izv. Akad. Nauk, Ser. Khim., No. 4, 715 (1999).
 N. Ishikawa and Y. Kobayashi, *Fluorine Compounds.*

Chemistry and Application (Kodansha Scientific, Tokyo, 1979).

7. N.S. Nikolaev, V.F. Sukhoverkhov, Yu.D. Shishkov, and I.F. Alenchikova, *Chemistry of Fluoride Halides* (Nauka, Moscow, 1968), 348 pp.

8. I.V. Nikitin, *Fluoride and Oxyfluoride Halides* (Nauka, Moscow, 1989), 118 pp.

9. S. Sorner, *Propellant Chemistry* (Chapman & Hall, New York, 1996).

10. V.C. Marshall, *Major Chemical Hazards* (Ellis Horwood Ltd., Chichester, 1987), 672 pp.

11. Sh.Sh. Nabiev and Yu.N. Ponomarev, Atmos. Oceanic Opt. **11**, No. 12, 1093–1098 (1998).

12. Yu.A. Buslaev, V.F. Sukhoverkhov, and N.M. Klimenko, Koord. Khim. 9, 1011 (1983).

13. M.O. Bulanin, ed., *Molecular Cryospectroscopy*, (Izd. St.-Petersburg State University, St. Petersbourg, 1993), 298 pp.

14. Sh.Sh. Nabiev and V.D. Klimov, Mol. Phys. 81, 395 (1994).

15. Sh.Sh. Nabiev, Izv. Akad. Nauk, Ser. Khim., No. 4, 560 (1998).

16. V.G. Vorobyev and V.A. Nikitin, Opt. Mekh. Prom., No. 5, 60 (1974).

17. B.I. Stepanov, Fundamentals of Spectroscopy of Negative Light Fluxes (Izd. Bel. Akad. Nauk, Minsk, 1961), 442 pp.

18. K.S. Seshardy and R.N. Jones, Usp. Fiz. Nauk 85, 87 (1965).

19. Sh.Sh. Nabiev and V.D. Klimov, J. Fluor. Chem. 58, 263 (1992).

20. V.A. Kondaurov, S.M. Melikova, Sh.Sh. Nabiev, P.G. Sennikov, and D.N. Shchepkin, Vysokochistye Veshchestva, No. 3, 119 (1993).

21. J. Huheei, *Inorganic Chemistry. Principles of Structure and Reactivity* (Harper & Row Publ., New York, 1983).

22. D.F. Smith, J. Chem. Phys. 21, 609 (1953).

23. R.D. Burbank and F.N. Bensey, J. Chem. Phys. 21, 602 (1953).

24. D.W. Magnuson, J. Chem. Phys. 27, 223 (1957).

25. R.D. Burbank and F.N. Bensey, J. Chem. Phys. 27, 982 (1957).

26. P. Gillespie, *Molecular Geometry* (Van Nostrand Reinold Comp., London – New York, 1972).

27. P. Goulet, R. Jurek, J. Chanussot, J. Phys. (France) 37, 495 (1976).

28. A.G. Robiette, R.H. Bradley, and P.N. Brier, Chem. Commun., 1567 (1971).

29. A.B. Altman, I.N. Myakshin, V.F. Sukhoverkhov, and C.F. Barranara, Dali, Alad Nauk SSSB 241 No. 2, 260 (1078)

G.F. Romanov, Dokl. Akad. Nauk SSSR 241, No. 2, 360 (1978).

30. Sh.Sh. Nabiev and L.P. Sukhanov, J. Phys. Chem. 71, 1069 (1997).

31. O.P. Charkin, Stability and Structure of Inorganic Molecules, Radicals, and Ions (Nauka, Moscow, 1980).

32. L. Stein, *Halogen Chemistry* (Academic Press, New York, 1967), 403 pp.

33. K.O. Christe, Inorg. Chem. 11, 1220 (1972).

34. K.O. Christe and C.J. Schack, Adv. Inorg. Chem. Radiochem. 18, 319 (1976).

35. H.H. Claassen, B. Weinstock, and J.G. Malm, J. Chem. Phys. 28, 285 (1958).

36. H. Selig, H.H. Claassen, and J.H. Holloway, J. Chem. Phys. **52**, 3517 (1970).

37. R. Rousson and M. Drifford, J. Chem. Phys. 62, 1806 (1975).

38. R.A. Frey, R.L. Redington, and A.L.K. Aijibury, J. Chem. Phys. 54, 344 (1971).

39. M.R. Clarke, W.H. Fletcher, and G. Mamantov, Inorg. Nucl. Chem. Lett. 8, 611 (1972).

40. N.R. Smyri and G. Mamantov, Adv. Inorg. Chem. Radiochem. 21, 231 (1978).

41. G. Herzberg, *Vibrational and Rotational Spectra of Polyatomic Molecules* [Russian translation] (Inostrannaya Literatura, Moscow, 1949), 647 pp.

42. G.M. Begun, W.N. Fletcher, and D.F. Smith, J. Chem. Phys. 42, 2236 (1965).

43. K. Ramaswamy and P. Muthusubramanian, J. Mol. Struct. 7, 45 (1971).

44. B.J. Krohn and W.B. Person, J. Overend, J. Chem. Phys. 67, 5091 (1977).

45. O.V. Blinova, S.L. Dobychin, and L.D. Shcherba, Opt. Spektrosk. **61**, 1209 (1986).

46. K.O. Christe, Spectrochim. Acta 27A, 631 (1971).

47. K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds* (Wiley&Sons, New York – Chichester – Toronto, 1987).

48. W.B. Person and J. Overend, J. Chem. Phys. 66, 1442 (1977).

49. Sh.Sh. Nabiev and L.P. Sukhanov, in: *Proc. of X Symposium on Chemistry of Inorganic Fluorides. Fluoride Materials* (Dialog-MGU, Moscow, 1998), p. 112.

50. V.L. Pershin and A.I. Boldyrev, J. Mol. Struct. (TeoChem) **150**, 171 (1987).

51. A.I. Boldyrev and O.P. Charkin, J. Strukt. Khim. 25, No. 4, 102 (1984).

52. S.P. Gabuda, Yu.V. Gagarinskii, and S.A. Polishchuk, *NMR in Inorganic Fluorides. Structure and Chemical Bond* (Atomizdat, Moscow, 1978), 205 pp.

53. Sh.Sh. Nabiev and L.P. Sukhanov, in: *Physical-Chemical Processes in Selection of Atoms and Molecules*, B.Yu. Baranov and Yu.A. Kolesnikov, eds., (TSNIIatominform, Moscow, 1998), p. 35.

54. Sh.Sh. Nabiev, Izv. Akad. Nauk, Ser. Khim., No. 8, 1999.