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The method has been developed for separation of the total hydrodynamic field into
components: stationary one and those moving in opposite directions. Thus the set of equations
breaks into three nonlinear equations for interacting components. New equations describing
slightly linear interaction have been derived for the general form of the refined equation of state.
The calculated nonlinear evolution of directed components shows that a directed wave in liquid
keeps its direction even at high amplitudes of initial distortions. Solution of the problem is also
interesting in view of a wide variety of problems with similar dispersion relation. The integral
dispersion operator, whose form is determined by medium inhomogeneity, arises also in the theory
of waveguide propagation of electromagnetic waves. The directed and stationary waves change the
background temperature (and density), as well as the main refractive index and thus create moving
or stationary areas of induced refraction and scattering of optical waves.

1. Problem of separation of directed
waves and stationary component
in the total hydrodynamic field

The most well-known methods of separation of wave
distortions is separation by branches of the dispersion
relation. This method allows separation of acoustic and
gravitational waves as well as Rossby waves in gas and
liquid.1–3 A problem sometimes arises on separation of the
total wave field in terms of the direction of propagation.4
This problem, in turn, has many aspects, for example,
separation of the total field into components at any instant
of time, estimation of the wave energy for each component,
construction of initial distortions for a particular type of
distortion (dominant distortion for the nonlinear problem,
which includes distortions of other types as well), and
estimation of generation of the mean field and mutual
influence of waves of different type.

The main idea within the framework of the linear
theory is to collect the Fourier transform components
corresponding to the same sign of ω and κ for the
downward wave and those with the opposite sign for the
upward wave (or left and right components for the
homogeneous medium). First, we obtain the coupling
equations for independent variables (for example, p, ρ, v) in
the k-presentation and then collect them by the Fourier
integral. For the stationary component, we collect
components with ω = 0. Thus, the total field of the linear
problems breaks into the directed and stationary
components, and projection operators are derived. Then the
projectors are used to study the nonlinear dynamics.

2. Stratified liquid in the field of gravity

2.1. Dispersion relation
and coupling equations

 
The set of equations of hydrodynamics is well-

known: it includes the Newton’s second law and the laws of

conservation of energy and mass.1,2 Let us use the problem
geometry accepted in geophysical hydrodynamics. Let liquid
be subject to gravitation giving rise to its density
stratification:

äv/ät + v äv/är = – (1/ρ) äp/är – g,

äε/ät + v äε/är = (– p/ρ) äv/är, (1)

äρ/ät + ä(ρv)/är = 0.

Besides, we should add the equation of state ε =
= ε(p, ρ). In Eq. (1) r is coordinate; t is time; ρ, p, ε, and v
are density, pressure, inner energy per unit mass, and speed,
respectively; g is the free fall acceleration. In the general
case, the task is to express the inner energy in terms of the
variables (p, ρ). For any liquid or gas, including stratified
ones, distortion of the inner energy can be expanded into
the Taylor series about small perturbations of the density
and pressure. For slightly linear evolution it is sufficient to
consider the series up to the second order of smallness:

ρ0(ε – ε0) = A(p – p0) + B(ρ – ρ0) + A1(p – p0)2/p0 +

+ B1(ρ – ρ0)2/ρ0 + D(p – p0) (ρ – ρ0)/ρ0 , (2)

ρ0, p0, ε0 are unperturbed values.
Assume that the background density is exponentially

stratified:
ρ0(r) = ρ00 exp(–r/h);

p0(r) = p00 exp(–r/h) = ρ00 gh exp(–r/h),

where p00 and ρ00 are the surface values; h is the height of
the “homogeneous” liquid (gas), i.e., the characteristic scale
of vertical inhomogeneity; p00 = ρ00 gh is conclusion of
stationary solution of the linear analog of Eq. (1):
dp0(r)/dr = – ρ0(r)g. For liquids it is taken that p00 is the
inner pressure, rather than the static one (that is,
atmospheric pressure over liquid). The corresponding
components of the Fourier series for distortions in the
exponentially stratified medium have the form



v′(k, t) = v′0(k) exp(r/2h) exp [i(ωt–kr)] exp(αr);

p′(k, t) = p′0(k) exp(–r/2h) exp [i(ωt–kr)] exp(αr);

p′(k, t) = ρ′0(k) exp(–r/2h) exp [i(ωt–kr)] exp(αr).

From the linear analog of Eq. (1) we obtain the
dispersion relation

ω2 = k2 [(gh–B)/A] + g2(A + 1)2/[4A(gh–B)],

where α = – (Agh + B)/[2h(gh–B)] or ω = 0. Two signs of
the frequency in solution of the dispersion equation and
zero frequency mean three independent types of wave
motion. It is proposed to separate the total wave motion into
three independent parts: upward, downward, and stationary
components, by introducing the complete orthogonal
system of projection operators. This is convenient from the
physical point of view, since the projection procedure can
be applied to the field at any instant of time.

The main stages of derivation of the equations for the
directed waves are the following.4–7 First, from the
linearized system (1) we have the following coupling
equations for the Fourier components of distortions:

ρ′0 = ρ00v′0(ik + 1/2h – α)/(iω);

p′0 = ρ00v′0 [B(–ik – 1/2h + α)] –

– gh (–ik + 1/2h + α)/(Aiω).

Hereinafter, the distortions of hydrodynamic variables and
the corresponding Fourier transforms are marked by primes.
Then we obtain the coupling equations in terms of the
variables (r, t) and collect the corresponding components by
the Fourier integral: components with different signs of ω
and k are collected for the upward moving wave, those with
the same sign are collected for the downward wave, and
components with ω = 0 are collected for the stationary
contribution. This procedure is described in detail in
Refs. 5 and 6. The coupling equations in term of the
variables (r, t) have the form

p+ = L1v+;   ρ+ = L2v+,  p– = – L1v–;   ρ– = – L2v–,

ρstat = L3pstat ,                         (3)

where ρ+ = ρ′up exp(–r/2h + αr), p+ = p′up ×exp(–r/2h + 
+ αr), v+ = v′up exp(r/2h + αr), and so on. The
integrodifferential operators L1, L2, and L3 have the form

L1 = ρ00/( )π (gh – B)/A  ⌡⌠
–∞

∞

 dr′×

× 








– 
gh – B

A  FAB(r′ – r) ä/är′ + 
g(A – 1)

2A  FAB(r′ – r)  ;

L2 = ρ00/( )π (gh – B)/A  ⌡⌠
–∞

∞

 dr′×

× FAB(r′ – r) 







– ä/är′ + 
g(A + 1)
2(gh – B)  ;

L3 = (1 – 2αh – 2h ä/är)/(2gh),

where 

FAB(r) ≡ 
2
π {I0[rg(A + 1)]/[2(gh – B)] –

– L0[rg(A + 1)]/[2(gh – B)]};

I0 and L0 are the modified zero-order Bessel function and
the Struve function, respectively. Then, using Eq. (3), from
the first equation of the set (1) we also obtain the linear
evolution equations for the upward and downward waves:

äv±/ät ± 
gh – B
π2 A  ×

× ⌡⌠
–∞

∞

 







v±r′r′ – 
g2(A + 1)2

4(gh – B)2 v± FAB(r′ – r) dr′ = 0. (4)

The evolution equations can also be obtained for the
variables p± and ρ± from the second and third equations of
this set.

2.2. Projection operators

The integrodifferential matrix operators for the
dynamics of ideal liquid and gas within the framework of
the linear theory were obtained in Refs. 4 and
5. Now we have new equations with regard for
expansion (2) of the equation of state:

P± = 






1/2 ±l1 ±l2

±L1/2 L1l1 L1l2
±L2/2 L2l1 L2l2

 ;

Pstat = 






0 0 0

0 l3 l4
0 L3l3 L3l4

 ; (5)

l1 = 1/( )2ρ00 π (gh – B)/A  ×

× ⌡⌠
–∞

∞

 dr′FAB(r′ – r) 







– ä/är′ + 
g(A + 1)
2(gh – B)  ,

3.1. Dispersion relation and coupling equations

In the case of homogeneous medium (liquid and gas),
the equations take much more simpler form. Now the
background density and pressure are coordinate-
independent constants. The corresponding components of
the Fourier series accept the form: p′(k, t) =
= p′0 exp[i(ωt – kr)]; ρ′(r, t) = ρ′0 exp[i(ωt – kr)]; v′(r, t) = v′0
 exp[i(ωt – kr)], where p′0, ρ′0, and v′0 are constants, as well
as the background values p0 = p00, ρ0 = ρ00. In the same
manner, ρ′± = ± L2v′±; p ′± = ± L1v′±. The dispersion relation
has the form ω2 = k2[(p0/ρ0) –
– Â]/À or ω = 0. Since the medium dispersionless, then the
group and phase velocities

c = [(p0/ρ0 – B)/A]1/2. (7)

The equations for projection operators can be derived
directly from the above equations by the transition h → ∞,
g → 0, gh → p00/ρ00, α → 0. The new operators are simply
factors: L1 = ρ0c; L2 = ρ0/ñ; l1 = 0; l2 = 1/(2L2); l3 = 1;
l4 = –L1/L2. Now the new coupling between the stationary
variables takes place: pstat = Lρstat = 0, so L = 0. The
operator chosen in such a way is inverse to L3, and
formally we can set L3 equal to infinity. In a homogeneous



medium it is natural to call the directed waves the right and
left ones.

The linear evolution equations for the right and left
waves have a very simple form: dv±/dt ±
± c dv±/dr = 0; v±, p±, and ρ± are the corresponding parts of
the standard variables v′, p′, and ρ′.

3.2. Projection operators
The projection operators possess the usual properties

of orthogonal operators and have the form

P± = 






1/2 ±l/(2L1) 0

±L1/2 1/2 0
±L2/2 L2/(2L1) 0

 ,

Pstat = 






0 0 0

0 0 0
0 –L2/L1 1

 .

3.3. Nonlinear evolution
of the right and left waves

Following the scheme described in Section 2.3, we
obtain the evolution equation for the right and left waves:

dv±/dt ± c dv±/dr = (1/2   ±1(2L1)   0) ×

× 











– v′ 

ä
är v′ + ρ′

ρ2
0
 p′

 
 

– v′ 
ä
är p′ +  

1
A  

äv′
är  [p′(– 1 + D + 2A1c2ρ0/p0) +

+ ρ′ (p0/ρ0 + Dc2 + 2B1 + B)]
 
 

– v′ 
ä
är ρ′ + ρ′ 

ä
är v′

or for the case of self-action

äv±/ät ± c äv±/är +

+ 
1+

 
(1– D – 2A1c2ρ0/p0)/A – (p0/ρ0 + Dc2

 + 2B1)/c2

2  ×

× v± äv±/är = 0 . (8)

4. Applications of the theory

4.1. Dynamics of liquid or gas

Since the equation for the energy density is taken in
the general form (linear coefficients of expansion À and B
enter into the operators, while the nonlinear coefficients À1,
Â1, and D enter into the nonlinear column), the theory is
applicable to a wide variety of liquids and gases. Besides
these coefficients, we need to know only the background
values of the density and pressure. For ideal gas, the
equation is well-known which describes the inner energy
ε = p/[ρ(γ – 1)], γ = Cp/Cv, so all the coefficients of the
expansion (2) are known as well: À = 1/(γ – 1); B = –
p0/ρ0(γ – 1); A1 = 0; B1 = –B; D = –A. As an alternative for
the case of a homogeneous medium, the equation p/ργ =
= p0/ργ

0 is used or

p′ = ñ2 ρ′ + 
c2(γ – 1)

2ρ0
 ρ′2 (9)

(Refs. 8 and 9). This gives the same square nonlinear terms.

Equation (9) follows from

dp/dt 

dρ/dt = 
γp 

ρ  , (10)

which, in turn, follows from the law of conservation of
energy [the second equation of the set (1)], expression for the
inner energy, and equation of continuity [the third equation
of the set (1)]. Equation (9) follows from Eq. (10) only in
the homogeneous medium.

For the stratified medium we have a completely
different situation. In the exponentially stratified medium
we should take into account the coordinate dependence of
the background density and pressure and use, for example,
äp′  
ät  = c2 

äρ′ 
ät  + 

v′p0 (γ – 1)
h  in spite of the linear analog (9)

p′ = ñ2 ρ′. Here p0(r) =
= p00 exp(– r/h), as was defined in Section 2.1. For other
type of stratification the coupling is different. In other
words, the coupling of density and pressure distortions for
the stratified medium ceases to be local. The expansion (2)
is local, therefore the expansion coefficients can be used in
a medium of any stratification.

4.2. Homogeneous liquid

After detailed consideration of the choice of the
equation of state or its replacement in ideal gas, we pass to
the more complicated case of a liquid for which only linear
terms of the expansion (2) are available from reference
sources. According to Eq. (2)

A = 
Cv 

k
βV  ,    B = – (

Cp 
βV – p0)/ρ0 , (11)

where V is the molar volume of the liquid; β =
= – (äρ/äT)p = const/ρ; k = (äρ/äp)T = const/ρ; À and Â are
functions of the equilibrium variables (ρ0, p0). It is the
practice to use Eq. (9) by analogy with ideal gas, and the
parameter γ is assumed to be an empirical constant.8,9

In fact, γ = (Cp/Cv)/(kp0) (this equation follows from
Eqs. (7) and (11), as well as Eq. (10), according to which
ñ = γp0/ρ0) is the function of density and pressure. For
water at the temperature of 10°C and atmospheric pressure,
γ = 7.22, whereas the approximation of temperature-
independent constant γ is often used. For example, in
Ref. 11 the value of 7.15 is taken. The method of expansion
of the inner energy is much more accurate, since it allows
one to find the local coupling between the distorted density
and pressure as a function of background values. The
coefficients of compressibility, thermal expansion, etc. can
be taken from Ref. 12.

However, the nonlinear coefficients of Eq. (2) are not
experimentally determined for liquids and are absent in the
reference literature even for water. Let us use Eq. (9) when
studying the nonlinear dynamics of liquids. In spite of the
second equation of the set (1) and the equation of state we
have

äp′
 

ät  + γp0 
äv′
är  = – v′ 

äp′
 

är  – γp′ 
äv′
är  . (12)

The evolution equation for a directed wave with
allowance made only for self-action can be found in the
nonlinear acoustics of gases:



äv±/ät ± c äv±/är + 
γ + 1

2  v± äv±/är = 0. (13)

The same equation can be derived by the method of
slowly varying amplitude.8,9 The analytical solution of
Eq. (13) is also well-known. The dynamics of upward and
downward waves for some types of distortions was
discussed in Refs. 4, 5, and 10. The upward and downward
waves keep their properties even for high initial amplitudes,
for example, for the amplitude of speed of the initial
conditions as high as 500 m/s. The initial distortions are
constructed by the equations of the linear theory, whereas
the dynamics was calculated by the well-known Lagrange
nonlinear scheme.4,5

4.3. Exponentially density stratified liquid

In the general case, if all the coefficients of the
expansion (2) are available, the nonlinear column can be
presented as in Eq. (6). In the stratified medium it is not
allowed to simply use the empirical equation (9) of
coupling between density and pressure for the case of
adiabatic process. Using ideal gas as an example, it was
shown that the coupling ceases to be local and depends on
the background stratification. In the case of known
nonlinear coefficients of the expansion (2), the problem of
slightly linear dynamics has an exact solution. Now we can
only assume that Eq. (10) is valid for the liquid. Let us
write down the evolution equation for the speed:

äv±/ät ± 
γgh

 

π2  ⌡⌠
–∞

∞

  



v±r′r′ – 

1
4h2 v± F(r – r′) dr′ =

= [1/2  1/(2L1)  0] exp (r/2h) ×

× 







– v′s (
ä
är + 

1
2h) v′s + 

ρ′s
ρ

2
00

 (
ä
är – 

1
2h)p′s

– v′s (
ä
är – 

1
2h) p′s – γp′s(

ä
är + 

1
2h) v′s

– v′s (
ä
är ρ′s – ρ′s 

ä
är) v′s

 . (14)

(10) markedly underestimates the amplitudes of speed,
pressure, and density. This discrepancy is also caused by
the use of Eq. (10) in spite of the equation of state (2) and
the equations of conservation of energy and mass [the
second and third equations of the set (1)].

4.4. Illustrations

Using Eqs. (13) and (14) we have calculated the linear and
slightly linear dynamics of some types of initial distortions
in stratified and homogeneous water. The following values
were taken: p0 = 3050.9⋅105 Pa; ρ0 = 998.206 kg/m3, and
γ = 7.15 (Refs. 11 and 12).

Figure 1 shows the slightly linear dynamics of the “saw-
tooth” speed distortion in the left wave for the cases of
homogeneous and stratified water. The role of dispersion is
clearly seen: the distortion broadens and blurs. The wave
amplitude in stratified water decreases. In spite of
dispersion blurring, this is also caused by the fact that the

plot is presented for the speed, while the equations for the
directed wave were obtained for the variable v ⋅ exp(–
r/2h + αr) [as was noted above, α = 0 in the approximation
(10)]. Figure 2 shows the linear and slightly linear
dynamics of the downward speed wave in stratified water
with allowance made only for wave “self-action.” The
maximum speed achieves 200 m/s. Fifteen second after the
beginning of the evolution, one can see characteristic
nonlinear distortion of the wave and twisting of
its trailing edge.

Fig. 1. Nonlinear evolution of the saw-tooth initial speed distortion
for the wave propagating through homogeneous and stratified
water: initial distortion (- - -); distortion in homogeneous water,
10 s after the beginning of evolution (–––); distortion in stratified
medium, 10 s after the beginning of evolution (***).

Fig. 2. Linear and nonlinear evolution of the initial speed
perturbation for the downward wave propagating through stratified
water: initial distortion (- - -); nonlinear distortion, 15 s after the
beginning of evolution (––––); linear distortion, 15 s after the
beginning of evolution (***).

Conclusion

The projectors have been derived in the most general
form dependent only on the equation of state in both
homogeneous and exponentially stratified media. Any non-
viscous liquid or gas can be considered as a medium. The



projection operators serve to study the nonlinear dynamics
and to separate the wave field into components: those
moving in opposing directions and the stationary one. The
form of the projectors depends on the dispersion relation,
which also arises in the problems of waveguide propagation
of electromagnetic waves.13

Application of the projectors allows studying
problems of self-action of individual modes and their
mutual influence, for example, generation of the mean field
by the right or left wave. The projectors are also applicable
in the problems with the boundary regime, as in the
problems with initial conditions.

With the projection operators we have obtained the
equation of slightly linear evolution of the directed mode
with allowance made for only self-action in the most
general form depending on the coefficients of serial
expansion of the inner energy.

The directed waves and the stationary component
change the parameters of the medium: density and pressure
and, correspondingly, temperature and speed. This also
changes the optical properties of the medium, in particular,
the main refractive index. Another possibility is to
determine a source, its power, and position from the
induced change of the optical properties of the medium.

References

 1.  A.S. Monin and A.M. Obukhov, Izv. Akad. Nauk SSSR, Geofiz.
41, 1360–1373 (1958).
 2.  V.A. Gordin, Mathematical Problems of Hydrodynamics and
Weather Forecast. Analytical Aspects (Gidrometeoizdat,
Leningrad, 1987), 256 pp.
 3.  L.M. Brekhovskich and A.O. Godin, Acoustics of Layered
Media (Springer–Verlag, Berlin, 1990), 141 pp.
 4.  A.A. Perelomova, Izv. Ros. Akad. Nauk, Fiz. Atmos. Okeana
29, No. 1, 47–50 (1993).
 5.  A.A. Perelomova, in: EAA Symposium, Gdansk–Jurata (1997),
pp. 189–194.
 6.  Yu.V. Brezhnev, S.B. Leble, and A.A. Perelomova, Phys.
Express 41, 29–37 (1993).
 7.  S.B. Leble, Nonlinear Waves in Waveguides with Stratification
(Springer–Verlag, Berlin, 1990), 163 pp.
 8.  M.B. Vinogradova, O.V. Rudenko, and A.P. Sukhorukov,
Theory of Waves (Nauka, Moscow, 1979), 383 pp.
 9.  O.V. Rudenko and S.I. Soluyan, Theoretical Grounds of
Nonlinear Acoustics (Nauka, Moscow, 1975), 287 pp.
 10.  A.A. Perelomova, Acta Acoustic 84, 1002–1006 (1988).
 11.  Sh. Fujikama and T. Akamatsu, J. Fluid Mech. 97, 81–512
(1980).
 12.  L. Haar, J.S. Gallagher, and G.S. Kell, NBS/NRS Stream
Tables (Hemisphere Publishing Corp., 1984), 211 pp.
 13.  H. Sailing, J. Math. Phys. 433, 507–516 (1992).

 


