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A comparison of the efficiency of phase correction under conditions of strong intensity
fluctuations for a plane wave and a focused Gaussian beam is being done. Different algorithms to
reconstruct the phase of an optical wave are investigated. Peculiarities of two-color adaptive correction

are discussed.
Introduction

During a long time, the terms “phase correction”
and “wave-front correction” were considered as
interchangeable concepts, and the terms “phase
corrector” and “wave-front corrector” were considered
as synonyms. Quite often, the adaptive correction was
interpreted as a straightening of wave front, be it
referred to receiving a distorted wave. In case of
adaptive focusing of beams, the correction was
considered as a pre-distortion of the wave front.

On the other hand, a more rigorous mathematical
consideration! within the frames of wave optics
describes the beam focusing or image formation as
adding partial waves with the allowance for their
phases. From this point of view, an adaptive element
phases the partial waves and provides for maximum
intensity in the focus of a system.

Under general conditions, if the wave front is a
sufficiently smooth surface, both of the approaches are
practically equivalent. However, when the condition of
wave-front smoothness is violated, the situation
changes. This occurs, for example, in the turbulent
atmosphere when the intensity fluctuations caused by
turbulent fluctuations of the refractive index are
sufficiently strong.

Wave-front dislocations

It is known that the wave-front dislocations at the
points where instantaneous value of the intensity equals
zero occur at the distances of optical wave propagation
through a random medium approximately equal to the
diffraction length L4 = kr(z), where 7y is the coherence
radius of a plane wave; k is the wave number of
radiation.

In the presence of such points, it is impossible to
describe the wave front of a reference wave as a smooth
simply connected surface. In this connection, the
adaptive systems with deformable mirrors become less
efficient.
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At the same time, numerical experiments? with the
model of a composite phase corrector showed that its
efficiency practically does not change when operated
under conditions of strong intensity fluctuations. These
results were presented earlier in Refs. 2 and 3. The
calculations were performed for a plane wave, with the
adaptive system operated as a receiver.

Plane wave

Before considering the results obtained for an
adaptive system to focus wave beams, i.e., the system
operating in the transmission mode, we would like to
remind most important results obtained in Refs. 2 and 3
for a plane wave.

It was revealed in these studies that the efficiency
of an adaptive system with a composite corrector is the
same both under conditions of weak and strong
intensity fluctuations in the atmosphere. First we
considered this conclusion as a paradox because we
expected that the presence of singular points in the
phase and the wave-front discontinuities would require
the use of an adaptive corrector with a larger number of
components. However, nothing of this kind has
happened. Moreover, from the standpoint of the
approach treating an adaptive system as a system that
phases partial waves this is just what to be expected.

Really, the transformation of phase distortions
into the amplitude ones in passing from a short path to
an equivalent long path does not, at all, cause a
decrease in the size of the coherence area, moreover, the
contrary situation may happen, that this can cause an
increase in that size. Therefore, having a segmented
mirror with the size of an element equal to the
coherence radius we can make phasing-in of these areas
and, hereby, provide a coherent summation of waves in
the telescope focus.

From this point of view, it is easy to explain
another one result?:3 for a plane wave, namely, the fact
that the dependence of the efficiency of an adaptive
system on the delay in correction circuit does not
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practically depend on the change in the turbulence
mode from weak to strong intensity fluctuations.

Bounded Gaussian beams and a “perfect
corrector”

The purpose of our study was to investigate a
more interesting type of waves, namely, the focused
Gaussian beams. We would like to address the question
on whether or not it would be possible to obtain that
high quality of correction for the beam as for a plane
wave. Moreover, in this particular case, the adaptive
system operates in the transmission mode that also can
yield different results.

It is known that an ideally “perfect” adaptive
system is capable of providing high-quality correction
of focused beams as was shown in Refs. 4 and 5.
“Perfect” means that the phase corrector has an
infinitesimal size of elements, and the boundary
conditions describing the field at the emitting aperture
of the adaptive system have the following form:

U(p) = Ag(p) exp [ arg u(p)].

The phase corrector has a finite size of elements,
which equals, in our numerical experiments, to the
Fried radius of coherence for the plane wave.

Let us consider first the results for a perfect sensor
and a corrector. In so doing, it is interesting to compare
the efficiency of adaptive correction for the initial
plane wave and a focused beam. The calculated result is
shown in Fig. 1.
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Fig. 1. Dependence of the parameter SR on the normalized
path length D /7y = 10 for a plane wave (7) and for a focused
Gaussian beam (2).

In both of these cases an optical system operates
in the transmission mode, i.e., the emitted wave is first
modulated by the adaptive phase corrector, and after
that the wave propagates through inhomogeneities of
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the refractive index. Thus, the adaptive correction is
introduced in optical wave as a pre-distortion of the
initial radiation. For a focused Gaussian beam the mean
radiation intensity in a focus is a measure of the
correction quality, and for a plane wave the measure of
the correction quality is the wave intensity that is
measured in the far zone, i.e., in a focus of a lens
placed at the far end of the path in the plane z = L.
This approximately corresponds to a broad collimated
beam or a broad beam focused far beyond the layer of
randomly-inhomogeneous medium.

It follows form Fig. 1 that the result obtained for
a focused beam and a plane wave is essentially
different. In numerical experiment, changing the path
length L in the range from 1,10 to 10 L4 did not
reveal any essential reduction in the correction
efficiency for the case of a plane wave. Different result
was obtained for the Gaussian beam. Already at
L = 2L, the intensity in focus is reduces twice, for
L =5L4 it reduces three times, and for L =7Lq it
drops by four times, as compared with the diffraction-
limited value. From this we draw a conclusion that
there exists a principle limitation on the purely phase
correction for the turbulent divergence of a focused
beam. It turns out that it is impossible to compensate
completely the turbulent effects on the long paths, no
matter what adaptive system is used. The table presents
the values L4, achievable values of the Strehl ratio
(SR) for 7y=10cm, A=0.5um, and the above
mentioned values of the path lengths.

Lokm | L=Lq=125 |L=2L4| L=5Lq [L=7L4
SR 0.68 0.48 0.33 0.25

The calculation used the aperture size D = 107,
i.e., for D >>ry. For D >10ry one can expect
approximately the same dependence of the SR
parameter on L /Ly, at least, for 0.1 < SR < 1.

Correction of a non-vortex phase

Consider now the other version, namely, the
correction for the non-vortex component of phase
distortions only. This variant corresponds to the
adaptive system of a traditional type with a deformable
mirror and a sensor that uses standard algorithm to
reconstruct a phase from its differences. In Refs. 2 and
3 we have presented the result obtained for a plane
wave, now it is interesting to compare it with the
results calculated for a focused beam. These are
presented in Fig. 2. It is a little bit unexpected, from
the first sight that the efficiency of the system with a
plane wave (curve 2) decreases more rapidly than that
for the focused beam (curve 7). On the contrary, in the
case presented in Fig. 1, the intensity of the focused
beam experienced a more rapid fall off. However, it can
easily be explained if one takes into account that in the
system with a focused beam the reference radiation is a
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diverging wave. The matter is that in a diverging wave
the intensity fluctuations develop more slowly than in a
plane wave. It is well seen if one compares the
expressions for scintillation indices of a plane wave

B =1.24 C217/6 11/6
and of a diverging spherical wave

pi=0.42 C2 /6 L1/6
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Fig. 2. Dependence of the parameter SR on the normalized
path length in correcting for the “non-vortex part” of phase
distortions. Complex amplitude sensor uses the algorithm
based on the solution of UNE, d << 7.

It follows from these formulas, that the given
value of scintillation index will occur in the diverging
wave on the path, which is almost twice as long at
equal values of Cﬁ k"/® Therefore, at the identical
length L the number of phase dislocations in the
diverging spherical reference wave will be smaller, and
the correction efficiency higher.

Thus, comparing the efficiency of adaptive
correction of a plane wave and a focused beam, we have
revealed that in correcting for all aberrations
(including the phase dislocations) the efficiency of
correction at focus decreases, for a focused beam, with
the increasing path length more rapidly than for a
plane wave, and at the correction for smoothed (non-
vortex) part of the phase aberrations only we have the
reverse situation. Note that the scales of path lengths in
this case differ almost by the factor of 10. Note also
that in both of the cases the spatial resolution of
adaptive system is supposed to be infinite, i.e., we
assumed that the size of elements of the sensor and
corrector d is much less than the Fried coherence
parameter .

Effect of the size of wave-front sensor
element

Consider now the efficiency of an adaptive system
with the finite size of its elements. For certainty, we

V.P. Lukin and B.V. Fortes

suppose d = ry. As shown in Refs. 2 and 3, for a plane
wave such spatial resolution (i.e., d =7y of the
adaptive correction is quite enough both in the range of
weak and strong intensity fluctuations. Let us now
address the question on whether or not the same occurs
for a focused beam.

Let us remind that in Refs. 2 and 3 the phase at a
subaperture element with the size d is determined
through the mean complex amplitude by the following
formula:

o= arg(D); U= | | vt drdy.

[¢

Actually, we change places of the operation of
averaging over the area and the operation of calculating
the arctangent (more exactly, calculation of the
principal value of its argument). Hereby we avoid
troubles connected with the problem on determining a
continuous phase over the whole aperture in the
presence of phase dislocations. At the same time, the
question remains on what is the type of optical sensor
able to carry out such measurement. We propose to
suspend solving this problem for a while. Note only
that using such model of adaptive system, we do not
answer the question on physical implementation of this
model, but in reward we succeed in keeping, in such a
mathematical model, the parameter characterizing the
spatial resolution of adaptive correction, namely, the
size of the area d. In our case, this area is
simultaneously a subaperture of the sensor and an
element of the composite corrector.
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Fig. 3. Dependence of the parameter SR on the normalized
path length for correction with the adaptive system having a
finite-size element. Complex amplitude sensor uses the
algorithm based on the solution of MNE, (1) d <<
(2) d = ry, the correction of “mean” phase and tilt; (3) the
correction of “mean” phase only.

Let us consider the numerical results of
simulation. Figure 3 presents three curves: one for the
infinite spatial resolution (when the size of the area
d =0) and two others for d = ry. In one of the latter
cases, only mean phase is corrected, and in the other
the mean phase and local tilt of the wave front are
being corrected. It is clear from the comparison of
curves 7—3 that, on the whole, the difference between
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these three variants is not of principle importance.
Although the efficiency of the adaptive system with the
infinite spatial resolution is higher the path length is
more important.

Two-color adaptive system

A problem on non-monochromatic adaptation
acquires the absolutely new character in view of the
possible presence of phase dislocations. The problem
arises owing to the necessity of scaling the measured
phase aberrations at the wavelength of the reference
radiation A, and at the wavelength A of radiation to be
corrected.! If the correction at the wavelength A, which
equals to ¢, + 21T is determined, then even in the case
of the absence of intensity fluctuations the principle
uncertainty of the 21m term essentially effects the result
of phase correction.

Really, if a segmented mirror introduces
additional optical path length difference determined as

Al = (A /210 (o, + 2Tn),

then at the other wavelength we obtain a change of
phase, which equals to

o =0/ (¢, + 2rm0).

Note, that the values ¢, ¢,, and »n are the
functions of transverse coordinates (x, y), which are
omitted for brevity. If, for example, the relation
A./AN=1/2, then the phase difference at the edges of
the wave front discontinuity, which equals 27 for the
reference wave, takes the value T for the wave being
corrected, i.e., the oscillations which should be added
in phase will be added in antiphase. Thus, the
uncertainty in the term 27w, which matters nothing at
the wavelength A, can cause drastic consequences in
passing to another wavelength.

As a result, it turns out that already the statement
of the problem itself on the use of reference radiation
with different wavelength ought to be related to the
algorithm of the wave-front sensor operation. In a two-
color adaptive system, it is more logical to measure
exactly the wave front aberrations that characterize
fluctuations of the difference Al between the optical
path lengths, not the fluctuations of the phase
difference. However, we cannot measure directly the
optical path length, while calculating Al as a product
of the subaperture size d and the measured local tilt s
yields a large error under conditions of strong intensity
fluctuations. Even if we determine a wave-front surface
of the reference wave, the presence of dislocation points
and wave-front discontinuities we again shall face
exactly the same problem.

Since the problem of two-color correction is too
complex being also inherently a multifactor task, we
will not complicate it by introducing additional spatial
scale — the beam size.

Let us consider the results of numerical
experiment with a plane wave for several variants of
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the system. The variants differ between each other by
the measured value. It can be either a local tilt or the
“mean” complex amplitude. The second distinction
consists in the reconstruction algorithm used, which
predetermines the method of identifying the term 2mm
(n is an integer number).

Let the wave-front sensor calculates the mean

complex amplitude at every subaperture (_]l-y]-, then the
corresponding phase (the argument of a complex
number), and the matrix of phase differences between
the adjacent subapertures

b = arg(U; ); B3 = bivgj — 0y D = it — bij.

Determining the phase differences seems to be an
unnecessary step, since our task is calculating the
phase. However, we have, for certain reasons, to
attribute the value 2mm;; to every ijth subaperture, and
it is just for this reason that we calculate the phase
differences and process the obtained array A;; with the
phase reconstruction algorithm.

The main drawback of this approach is that one
can miss an integer number of wavelengths even in the
absence of intensity fluctuations, since the function arg
returns the values into the interval [0, 2m that
corresponds to [0, A] in terms of the optical path
length. However, one cannot be sure that the path-
length difference between the beams separated by a
distance d exceeds A. 1If, as it is in our case, d = ry,
then the structure function at such separation equals to
D(p=d) =6.88(d /rg)>/3 = 6.88 rad. Correspondingly,
the root-mean-square value of fluctuations of the path-
length difference, which is expressed in terms of
wavelengths, equals to 6.881/2/2m= 0.4\. Thus, the
situations are quite possible, when the optical path-
length difference equals to 1.1A, for example, and the
phase difference sensor gives a value equaled to
0.12m= 0.628 rad.

The only method to detect that actual optical
path-length difference was larger then the wavelength
is to decrease the size of sensor elements d, for
example, by 2 to 3 times and to sum the obtained phase
differences. Another one method could be the
measurement of a local tilt of a wave front and to
multiply it by the size d. However, the latter method
gives an error that rapidly increases in the range of
strong intensity fluctuations.

To illustrate these considerations, let us discuss
the results of numerical simulation which are presented
in Figs. 4 and 5. All these results were obtained for a
plane wave and the following relations between the size
of a focusing lens D, coherence radius 7, and the
subaperture size d: D/rg=10, d =r,. Ten random
screens simulated the randomly inhomogeneous
medium, and the radiation intensity at the lens’ focal
plane was averaged over 10 random samplings.

The path length was taken to be L /Ly = 0.01 (see
Fig. 4), i.e., it was assumed that the intensity
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fluctuations at the exit from the random medium are
practically absent. We have varied the wavelength of
reference radiation A,. (Note that the wavelength enters
into the formulas for L4 and 7y. Because now we
consider, in our problem, radiation at two different
wavelengths, it is necessary to choose a radiation with
the concrete wavelength to be used for normalizing
parameters of the problem). We wused a fixed
wavelength A of the corrected radiation in normalizing.
Therefore, the normalized path length L /L4 and the
normalized aperture size D /7y for the reference
radiation with the wavelength A, will be different. In
the description of numerical results, we always give the
values corresponding to the initial wavelength A.
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Fig. 4. Dependence of the parameter SR on the normalized
wavelength of reference radiation for two types of sensor:
“mean” phase sensor (1) and local tilt sensor (2).
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Fig. 5. Dependence of the normalized intensity (parameter
SR) on the wavelength of reference radiation. Value of the
normalized path length L /kry? (normalized to the wavelength
of corrected radiation) is: 0.25 (7); 0.5 (2); 0.75 (3); 1.0 (4).

Two curves in Fig. 4 show the dependence of
normalized intensity at the lens focus (the parameter
SR) on the ratio A, /A. The curves are different only by
the method used to determine the array of the phase
differences Ad;;. In one case (curve 7) the phase
difference was determined through the argument of the
mean complex amplitude U, and in the other case
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(curve 2) the phase difference was determined as a
product of the local tilt and the subaperture size (the
local tilt also has been calculated by making use of U
and the gradient of U).2:3 In both of these cases, the
algorithm was used based on solving the modified
normal equation (MNE), which was proposed in Refs. 6
and 7 and used earlier in Refs. 2 and 3. In this case it
yields the same result as the algorithm based on
solution of unmodified normal equation (UNE), since
the intensity fluctuations are negligible
(L/Lg=0.01 << 1).

As was expected, the direct measurement of the
phase difference for scaling to larger wavelengths
causes a rapid fall off of the correction efficiency.
Already at A, = 0.8\ the parameter SR falls twice, and,
when A, decreases down to 0.5, its value falls simply
catastrophically. At the same time the second variant of
the wave-front sensor that uses the values of local tilts
operates practically with the same quality over the
whole range of calculations for 0.5A <A, < 1.5A. A
certain decrease in the parameter SR for A, <A is
explained by a small rise of the intensity fluctuations of
the reference radiation when the wavelength A,
decreases.

It is interesting to identify the limits, within
which the correction efficiency for the system with the
local tilt sensor keeps unchanged. Let us consider
longer paths. We set the limits of the normalized
lengths to be L/L4=0.25, ..., 1.0 and will vary the
reference wavelength A, within a more wide range from
0.5 to 10A. The results of numerical simulation are
presented in Fig. 5. It is clear from this figure that
even at equal wavelengths, i.e., at A.=A the
normalized intensity of a focal spot is less then the
diffraction-limited value. It is caused by that, in the
system with a local tilt sensor, the error of estimation
of the phase difference increases rapidly with the rise of
intensity fluctuations.

When the wavelength of reference radiation
decreases, its intensity fluctuations become stronger and
correspondingly the correction efficiency falls. When
the wavelength of reference radiation A, changes from A
to 0.7\ the parameter SR decreases almost twice. An
increase in the wavelength of reference radiation causes,
first, a certain growth of the SR for A, changed from A
to 2\, and in passing to a yet longer wavelength of
reference radiation the adaptive correction efficiency
again decreases, but the decrease is sufficiently slow.
The parameter SR decreases approximately twice when
A, increases to 6A, and it falls three times when A,
increases up to 8A.

Thus, the use of radiation with longer wavelengths
as the reference one causes a small change in the
correction efficiency for A, =1, ..., 3\, which slowly
decreases with the further increasing wavelength.

It seems to be impossible to overcome this situation
in any other way, since it is not connected with the
intensity fluctuations (they decrease with the growth of
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M) or with unsuccessful selection of the distortion sensor.
Simply, this is connected with the diffraction. With the
growth of wavelength the phase distortions more and
more quickly become the amplitude ones and this does
not cause the growth of the intensity fluctuations by
only one reason: that the phase distortions themselves
decrease at the increasing wavelength.
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