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We propose a method for numerically

simulating stochastic fields with the spatial

inhomogeneities varying in a wide range. The method allows one to combine the modal approach based
on expansion of random homogeneous isotropic field over Karhunen—Loeve—Obukhov functions with a
spectral approach or the sliding average approach. Advantages of the method over the other known
methods of random field generation manifest themselves, in particular, in the case when a random field
with a wide range of inhomogeneities in relatively small areas is to be induced. This problem arises, for
example, in simulating the laser beam wave front propagated through the atmosphere.

Theoretical investigations of wave propagation
through randomly inhomogeneous media wuse the
approaches that are based on solving the stochastic
wave equation or the equations for the statistical
moments of the field. However, solution of the
corresponding differential equations for the statistical
moments of fourth order is a very difficult
mathematical problem, for which only some asymptotic
solutions have been obtained so far. Therefore, the
method of statistical tests based on the phase screen
model! is an important instrument, in nonlinear optics,
for investigation of the wave propagation through
randomly inhomogeneous media.

Numerical formation of the phase screens -
random fields with prescribed statistics — is the key
issue in constructing such an investigation method. To
form a homogeneous isotropic random field, one usually
uses the spectral method, and more rarely the method
of sliding average. The spectral method makes it
possible to form the fields, the maximum scale of
fluctuations in which does not exceed a half size of the
domain the calculations are being performed in. On the
other hand, there are limitations on the minimum
fluctuation scale, i.e., the step of the calculation grid
should be less than the sixth part of the minimum
scale. The combination of these conditions significantly
limits the range of spatial fluctuations that can be
reconstructed by this method. The method of moving
summing is used in simulating small-scale fluctuations.?
The method of enclosed grids3 and the method of
subharmonics4 were proposed for extending the range of
the spectral method applicability to the region of the
large-scale fluctuations. The modification of these
methods® improves the accuracy of reconstruction of the
low-frequency spatial fluctuations.6 When applying
these methods, one should check the number of
iterations sufficient for reconstructing fields with a
preset correlation function. The larger the preset outer
scale, the larger is the number of iterations needed.6
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The modal approach is known, in which the random
field is formed as a superposition of basis functions. In
practice, a limited number of basis functions impose a
limitation on the spatial scales that can be reconstructed.
The modal approach adequately reconstructs the large-
scale fluctuations.6

In this paper, we propose the method for the
formation of a homogeneous isotropic random Gaussian
field with a wide range of the fluctuation scales that
combines the spectral and modal approaches. The
stochastic field S is presented, in the calculation
domain, as a sum of two (or more) statistically
independent fields’:

S(P) =Sy 1(P) +Spa(p) + ...+ Syn(P) + Spp) . (1)

Each field is characterized by its own correlation
function By((p — p'), and the set of this fields forms
the field with the correlation function B(|p—p'|)
corresponding to the preset spectrum. In this case the
relation

B(p-pD=By(p-pD+
+Bp(lp—p D+ ...+ Bun(p—p' D +Bg(lp—p'D.

is true.

The stochastic fields Sp;, corresponding to the
first terms of this series, are formed on the basis of the
modal approach, and they correspond to the low-
frequency and medium-frequency components of the
simulated field. The last field Sg is formed by the
method of sliding average or by the spectral method,
and it corresponds to high-frequency component. The
formation starts with the first field of this series
according to the following algorithm:

Eigenfunctions Y(p) (Karhunen—Loeve—Obukhov
functions) and eigenvalues Aj of the integral operator
are determined. The kernel of the operator is the
correlation  function B(p,p)=B(lp—p) of the
stochastic field S(p) simulated:
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” () B(p, P Wi(p) d2p' = A (@) 5 (2)

B(p,p) =<[S(p) —<S(p)>|0S5(p") —<S(p)>|>,
where angular brackets mean averaging over an

ensemble;
gt lpl<R,
oo, |[pl=zR.
In Ref. 8 the way was proposed for determining
the Karhunen—Loeve—Obukhov functions Y;(p) through

the expansion over Bessel functions J,(x). The
functions Y(p) are obtained in the following form:

Wr(p) = K5(p) exp (ieB) = gdfj MDXp(iee) (3)
{ ! p=0 e DZR |j ’

p=(p,0).

Here P is the number, which presets an approximation
order; d’ are the components of the eigenvectors of the
matrix C with the elements:

PN o0
IR %‘P' or(P AP

e  — _
Cop Tta, J Je
0

where [, are the roots of the equation Jo(x) = 0; where
Jo(x) is the zero order Bessel function;

R
-2 L0
ap = R2 []O(Up)P J p Ds(p) Jo %lp 2R|:|dp‘
0

The eigenvalues 7\{; are arranged in the order of
decreasing values A{>Ay>...>A\,, where Aq s
A{=max 7\{) Then the
eigenfunctions are sorted according to the obtained order.

The obtained sequence Yp(p), k=1, 2, ..., K is
the sequence of functions that are close to the
Karhunen—Loeve—Obukhov functions with the accuracy
determined by P value.

The field is set in the form of K functions W.(p)
corresponding to K greatest eigenvalues as follows:

determined as follows:

K
Su1(p) = 3 br Wrlp) , (4)
k=0

where b, are the independent normally distributed
random values with zero mathematical expectation and
the variance Ap; A, are the eigenvalues and Y,(p) are
the eigenfunctions of the integral operator.

It is known that the larger the number of
eigenfunctions are taken, the higher is the accuracy
with which the field Sg(p) represents the field S(p)
determined by the correlation function B(p - p'). In
practice, one is forced to use a finite number of
eigenfunctions. The field determined by such a finite
series has the correlation function close, but not equal,
to the preset correlation function. To form the preset
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field, one can add the statistically independent field
So(p) to the field Sg1(p). The correlation function
By(p — p') of the field Syy(p) should be equal to the
difference between the correlation functions B(p — p')
of the initial field S(p) and By(|p — p'|) of the first
approximation field Sg(p).

As the modal method reconstructs practically any of
the large—scale fluctuations, the correlation function
By(lp—p'D is different from zero in the area of a
smaller size than in the case with the correlation
function B(|p — p'|). If the size of this area is yet big
for using the method of sliding average to form the
field corresponding to the function B,(|p — p'|), one
should again apply the modal method, but on a shorter
range Ry < R.

Such a process can be continued until the spectral
range of the correlation function of the residue becomes
convenient for application of the spectral method or the
method of sliding average. Once such a situation is
reached, the spectral method or the method of sliding
average can be applied to form the last field Spg, and
the process of formation of the field S(p) stops. The
number of fields formed by the modal method should
be selected based on the idea of optimization of the
calculation process. If the size of the domain where it is
necessary to set the field is significantly smaller than
the region in which the initial correlation function is
different from zero, it is expedient, from the standpoint
of organization of the calculation process, to form
several fields by the modal method, while narrowing in
succession the domain of their definition. The advantage
of the method proposed over other known methods of
numerical generation of random fields manifests itself
at generation of random fields with a wide range of
inhomogeneities in relatively small regions. Such a case
appears, for example, in simulating wave fronts of laser
beams propagating through the atmosphere.

Thus, the process of simulating random fields
involves the following stages:

1. To form the field by modal technique the
eigenfunctions Y (p) and the eigenvalues A, of the
correlation function B(p — p') are determined.

2. The field Sg4(p) is formed using the algorithm (4).

3. The difference is determined between the
correlation function B(p—p') and the correlation
function By((p — p') obtained:

B(p—p) — Byi(p—p) =AB(p - p).

4. The possibility is analyzed of applying the
spectral method or the method of sliding average to
form the field with the correlation function AB(p — p')
and then apply these methods, otherwise, the stages 1—4
are repeated for the field AS(p) with the correlation
functions AB(p — p').

The stages of random field formation are shown in
the left-hand panel of Fig. 1 as the stages of
approximation of the correlation function of the field.
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Fig. 1. Stages of the approximation of the correlation function and the effect of the degree of approximation on the intensity

distribution of the beam at A = 1.06 pm with the diameter of 3 cm in the near zone (690 cm); —— — initial correlation function;

----------- approximate correlation function; = = = = = — residue of the approximation.
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The way of representing the random field in the
form of a set of random fields corresponding to
contributions from different in scale inhomogeneities is
useful for studying the effects of these contributions on
the processes simulated. In particular, one can visually
demonstrate the effect of each stage of the correlation
function approximation on the model of laser beam
propagation through a medium with random fluctuations
of the refractive index.

The distributions of the laser beam intensity in the
observation plane after passing through the phase screen
of fluctuations of the refractive index are shown in the
right-hand panel of Fig. 1. The phase screen at each
stage is the combined random field with the correlation
function corresponding to this stage of approximation.
Three samples of the intensity distribution are shown for
each stage, as well as the sum of these three samples,
which demonstrate the displacement of the beam as a
whole. Besides, this method of formation of the random
field makes it possible to complicate the model of the
random field by introducing the anisotropy of the field
in selected scales of the inhomogeneities. For example,
it can be useful in the study of atmospheric turbulence,
which may have the anisotropy of inhomogeneities of
the refractive index at low spatial frequencies.

Typical distributions of the intensity of laser
beams of different diameters at propagating through a
1-m thick phase screen are shown in Fig. 2 for the far
zone of observations.

a b
Fig. 2. Distributions of the laser beam intensity at
propagation through a random phase screen with the
spectrum  (5) and the parameters: a=11/3, C2=
=1.74009 m2/3, [,=0.15cm, Ly=100cm, dZ=1m,
A =1.06 pm; beam diameter is 30 mm (@) and 10 mm (b).

The correctness of algorithm operation was
examined by means of statistical estimations of the
correlation function of the field on the set of the field
realizations. Figure 3 shows the correlation function
corresponding to the spectrum

D1%4(p) = A(a) C2LB+ N exp {—p2[F} x

x |1+ p2 L2[B+0/2 5)
where
r2+a
Ala) Gt e )Sin (am/2)

with the parameters o =2/3 C2=1.300"9 m=2/3,
L=25cm, lj=0.04cm (solid line) and two its
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estimates obtained from the set of realizations: estimate
over 5000 realizations of the field is shown by dashed
line, and the estimate over 500000 realizations is shown
by dotted line. It is seen from this figure that the
method well reconstructs the simulated random field.
Maximum deviation of the estimate of the correlation
function from the preset value is less than 1% of the
variance at a sufficient number of tests. The estimation
of the structure function is shown in Fig. 4.
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Fig. 3. Estimates of the correlation function of the random
field over the set of realizations of the field with
the correlation function corresponding to the spectrum (5)
at a=2/3, C2=1300°9m2/3, L=25cm, [j=0.24cm.
— correlation function; - --- - — estimate over 5000

realizations of the field cross section; «e«eece-e+ — estimate over
500000 realizations of the field cross section.
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Fig. 4. Estimates of the structure function of the random field
for the spectrum (5) at a=2/3, C2=1.300"9 m2/3,

L =25cm, [j=0.24 cm. — structure function; seecseeeee
— estimate over 5000 realizations of the field.

Thus, the method is proposed for numerical
simulation of a uniform isotropic random field with a
present correlation function that efficiently works in a
wide scale range of spatial inhomogeneities. There is
the possibility of introducing the field anisotropy only
for certain frequency ranges. This method is convenient
for analysis of the effect of different scales on the
processes under study and the effect of different factors
on the statistical characteristics of the laser beams
propagating through the medium with random
inhomogeneities. One can apply it to statistical testing
in the problems of the laser beam propagation through
a turbulent medium.
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