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Resonance excitation of light field in weakly absorbing
spherical particles by a femtosecond laser pulse.
Peculiarities of nonlinear optical interactions
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Based on the numerical solution of linear problem on diffraction of a femtosecond plane wave on a weakly
absorbing spherical particle, the spatial and temporal structure of the light field inside a sphere is studied. It was
found that there exists a multimode regime of excitation of whispering-gallery (WG) modes. The effect of the
spectral width ratio between the excited WG mode and the laser pulse is analyzed. It is shown that the decrease of
this ratio at transition from a monochromatic wave to a femtosecond pulse leads to a significant decrease of the
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high-intensity internal field at the points of its maxima. The possibility of obtaining stimulated radiation in a
microparticle at the Stokes and third-harmonic frequencies is shown.

Introduction

The progress in technology of high-power
femtosecond lasers far extends the applicability of a
laser to environmental studies. Thanks to high intensity
(01013 = 1015 W /cm?2), ultrashort duration (several
femtoseconds), and the wide spectral interval of such
pulses,! new capabilities appear in diagnostics of gas—
aerosol media with high spatial resolution and high
sensitivity. 23

By now, the first experiments have been conducted
that have demonstrated high efficiency of femtosecond
technologies in application to solving some problems in
remote sensing of the atmosphere.2

A new research field — femtosecond atmospheric
optics — is now being developed in atmospheric optics.4
Within the framework of this topic, the problem of
interaction of high-power femtosecond radiation with
the aerosol component is of great interest. Excitation of
different  processes of stimulated scattering in
microparticles allows chemical composition of aerosol
particles to be analyzed and, in some cases, to
determine their size spectrum.® Besides, theoretical and
experimental works on nonlinear femtosecond optics of
aerosol that are important for atmospheric optics also
are of importance in the optics of microcavities and
related spectroscopy of the particulate matter.

In nonlinear optics of aerosols in quasi-stationary
light fields, the following processes of stimulated
scattering were studied: stimulated Raman scattering
(SRS), stimulated Brillouin scattering (SBS), and
stimulated fluorescence (SF).6:19 Experimental?.8:10 and
theoretical® results on the third harmonic generation
(THG) in microparticles were also obtained.

In Ref. 7, it was found that THG arises in
microparticles along with SBS under conditions of
quasi-stationary excitation, and the resulting spectrum
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consists of separate lines from the lines of the third
harmonic of g-order SRS (g =1, 2, ...) 3w, to the line
3wy (uy is the fundamental laser frequency). For these
conditions the efficiency of THG is low, and its
intensity is usually 01074 — 1076 of the SRS intensity.8

The third-harmonic signal from aerosol particles
was observed in the experiment!® from particles that
were exposed to pulsed radiation from Ti:sapphire laser
with the duration of 80 fs and the peak power of
05.3 GW. The laser pulse repetition frequency was
1 kHz, and the laser wavelength centered near 820 nm.
In the experiment, water droplets from 1 to 32 pm in
size were used. The angular characteristics of radiation
were studied as well. The experimental observation
limit for the third-harmonic signal was 5 (101! W /cm?2.
The experimental data on the other important effect —
SRS — stimulated by a femtosecond pulse in a particle
are absent in the literature.

New results have been obtained recently in
femtosecond nonlinear optics of extended media. They
are of great interest for nonlinear optics of aerosols. For
femtosecond pulses with the duration ¢, shorter than
the period of molecular vibrations in a matter Tx, SRS
manifestation has some peculiarities as compared to that
under the quasi-stationary conditions. As such a pulse
propagates along the Raman-active medium, every its
Fourier component is converted nonlinearly. This gives
rise to conversion of the entire spectrum of the pulse —
it shifts to the red region.!! 13

The effect of pulse “clearing” of high-frequency
components and conversion into an IR femtosecond
pulse has been predicted in Ref. 14.

Another interesting fact has been discovered
experimentally in  Ref. 12.  Stimulated molecular
vibrations arose as a Raman-active medium was exposed
to a group of femtosecond pulses with the repetition
period equal to the period of molecular vibrations. The
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properties of stimulated molecular vibrations were
studied from scattering of a probe light wave.

Obviously, the conditions of appearance of such
effects in microparticles are different. This is connected
with  significantly  different character of the
spatiotemporal behavior of optical fields in a particle—
microcavity as compared to the traveling waves.

An important feature of a femtosecond laser pulse
is its wide spectrum. The width of the pulse spectrum Ac,
is inversely proportional to the pulse duration ¢, and
can reach Aw, O 1015 - 1016 Hz at tp = 10714 - 10715 s.
That wide frequency region allows obtaining excitation
of a large number of high-Q resonance modes, the so-
called whispering gallery (WG) modes, in a particle.
The presence of these modes favors efficient nonlinear
interaction of waves. The interaction time for optical
fields in the WG modes increases significantly; for the
case of traveling waves, this is equivalent to the increase
of the distance at which they interact. Thus, strict
restrictions imposed on tuning the frequency of the
incident field to particle resonances are lifted by use of
femtosecond pulses, and the efficiency of mode coupling
at nonlinear interaction increases. In a microcavity, not
all modes are under the same energy conditions, and only
the WG modes can take an active part in the process.

An important stage in the research into nonlinear
optical interactions in a microcavity is the study of
resonance structure of the inner optical field. It is just
this problem the solution of which this paper addresses
to. In addition, it analyzes peculiarities of nonlinear
interactions of optical fields of femtosecond pulses in a
microparticle.

1. Optical field of ultrashort pulse
in a dielectric sphere

The problem discussed is from the category of
problems on diffraction of nonstationary and, in the
general case, inhomogeneous light field on a dielectric
sphere. The technique of solving such problems was
considered in Refs. 15-17. Let us consider now the key
items in the description of the transient stage in
formation of the inner optical field in spherical dielectric
particles in a linear formulation. The nonlinear effects
will be estimated in Section 3. We assume the particle to
be at the origin of coordinates, and the laser pulse
diffracting on this particle propagates along the axis z.
The strength of the electric field of incident radiation can
be written as

Eo(r; 1) = 1/2 Ey pe g(1) H(rp) exp(ioayt) + c.c., (1)

where oy = 211); fo is the carrier frequency of the
pulse; Ej is the real field amplitude; g(t) and H(rp) are
the temporal and spatial pulse profiles, respectively;
r=rpte,z e, is the unit vector along the z axis;
T=t¢t—2z/c is the time measured in the coordinate
system moving with the light pulse (hereinafter, the
“shifted” time); ¢ is the speed of light; p. is the vector
determining the polarization of the light wave.
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To calculate the distribution of the inner optical
field of the particle and apply the apparatus of the Mie
theory, one should first pass from the temporal
coordinates to the domain of spectral frequencies by use
of the Fourier transform of the initial light pulse

Eoy(r; ) = J Eo(r; 1) exp(— iwD) dt =

—00

= Egpe H(ro) G(w— wy), ()
where G(w— wy) = I g(1) exp {~ i(w— w1} dt is the
Fourier transform of the function ¢(t). Similarly, by
inverse transformation, we obtain

Eg(r: ) =5 [ Eotrs @ exp (o) doo -

—00

- %Tpe H(rp) J Ey G(w — ay) exp (D) dw. (3)

—00

Formally, this equation determines the initial
pulse as a sum of the infinite series of elementary
monochromatic waves with the amplitudes A(w) =
=Ey G(w—- wy) dw. Every wave diffracts on the
particle, thus making the contribution A(wW)Es(r; w) to
the total amplitude of the internal field. The magnitude
of this contribution depends on the optical properties of
the particle, as well as on the spatial profile of the
beam H(rp); this is taken into account in the pulse
response function (transfer function) of the particle—
environment system Es(r; w). Thus, the time-dependent
strength of the electric field inside the particle E;(r; 1)
can be expressed through the inverse Fourier transform
of the product of the frequency spectrum of the initial
pulse and the transfer function:

1 .
E(r; 1) = 7 Eo exp (iuyT) %

x j G(w) Es(r; 0 — ay) exp (o) dw+ c.c. (4)

—00

The pulse response function Eg(r; w) can be
determined from the stationary Mie theory by
calculating the amplitude of the internal field of the
particle exposed to a monochromatic light wave with
the unit amplitude, frequency w, polarization vector pe,
and the spatial profile H(rg). Thus, for example, in the
spherical coordinate system r = (r, 6, ¢) the function
E; is described by the following equation 18,19

B0 == 5 5 (om0 Myn(8, ) 0,(k, ) +
47 p=1 m=n

1

+ k dum(xg) O % [M,,,,(8, §) W, (k, 1’)]} +c.c., (5)
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where k, = wn,/c is the wave number inside the
particle; m, = n, + i1, is the complex refractive index; n,
is the real refractive index, 1, is the absorption coefficient
of the particulate matter; m=m,, /my is the relative
refractive index (my is the refractive index of the
environment); x, = kyay/n, and ay are the diffraction
parameter and the particle radius, respectively; M,,, are
the spherical vector-harmonics; (, and &, are the
spherical Ricatti— Bessel functions; ¢, and d,,, are the
generalized Mie coefficients related to the known
amplitudes of the partial waves of the internal field ¢,
and d,, for a plane wave!8 and the beam shape factors
(9nm)TE and (g,,)TH for the TE and TH polarization,
respectively, by the equation20:

Cnm = Cn(gnm)TH; dnm = dn(gnm)TE;
Y 2n + 1 -m )
n(n + 1) g (x,) @, (mx,) — m &,(x,) W(mx,)’

Cn =

2n + 1 m
d,=1i"

" on(n 1) &, (xy) Wy(mx,) —m &, (x,) W, (mx,)

The coefficients g, depend only on the specific
beam profile H(rg) and the geometry of its incidence
onto the particle.

Combining equations (4) and (5), we finally have
for the envelope of the inner electric field strength:

Ei(ﬁ 1) = 4ka - n§1 m:z_n{[SnmJTH Mnm(ev ¢) +
+0x [[Smn]TE Mnm (ev ¢)]} +c.c., (6)

where [s,,,] are the time-dependent partial amplitudes:

[

1 ¢ dw
[SumlTh = o j 9 Cpm(® — ) %

x (0 — wy, r) G(w) exp (iwD).
@)

C

dw
LsumlTE = 2mn, J o2 dyp(@ = @) %

x P(w =y, 7) G(w) exp (GwD).

In the numerical calculations of the evolution of
the optical field intensity inside a particle, the temporal
profile of the laser pulse was taken to be Gaussian:

g() = exp {-12/13 }, (8)

where ¢, is the pulse halfwidth at the level of e~!. It
was also assumed that the laser pulse is a plane wave
polarized along the axis y, i.e., p, H(rg) = e,. The case
of diffraction of a spatially limited beam is beyond the
scope of this paper. For the function (8), the Fourier
transform is also Gaussian with the spectrum halfwidth
Awy, = 410/¢,,; therefore, it can be written as

_ 4_T‘\E[ )
G(w) = A, exp @- 4TF Awﬁ@’ 9)
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2. Discussion

Calculations were performed in the following
order. First, the laser pulse spectrum (9) was
calculated at N, points with the discretization step
Aw = 4T1f;, where [ is the discretization frequency. The
number of nodes Ny was chosen so that the condition
Nhw/Aw, 2 3 be always fulfilled. Then we calculated
partial amplitudes [s,,,] by Egs. (7) using specially
developed Mie-theory-based software and summed them
up according to Eq. (6) separately for every spherical

component of the inner electric field I:Ii(r; 7). Thus
obtained values were used to construct a dimensionless
combination giving the relative intensity of the internal

1 ~
field (inhomogeneity factor) B(r; 1) = EDEi(r? .
0

Finally, the values of the obtained 4D B matrix were
interpolated from the shifted time T to the real time ¢
with the use of the spline-approximation.

The particle size was tuned to a selected resonance
mode by seeking the corresponding extreme in the
amplitude coefficients ¢, and d, by use of the golden
section method.!® In all cases, the calculations were
performed for water droplets with n, = 1.33 suspended
in air and the water refractive index 1, = 1078. The
carrier frequency of the laser pulse was taken to be fy =
= 5.64 0104 Hz; this frequency corresponds to the
wavelength Ag = 0.532 um. The dispersion of the
refractive index within the spectral interval chosen was
neglected.

Before discussing the results obtained, let us
consider the characteristic peculiarities in the spatial
distribution of the light field of resonance modes of
spherical ~ particles. In the general case, the
electromagnetic field inside a large transparent particle
has a complicated spatial structure that is characterized
by the presence of a number of spikes whose intensity
may differ by 10 to 100 times. Intensity of the internal
field is maximum near the surface of a sphere along the
incidence direction of a light wave; these peaks
correspond to the zones of incident wave focusing by
the front and rear surfaces of the particle (Fig. 1a).

The resonance of the field inside the particle
occurs when the frequency of incident wave is tuned to
the frequency of one of the particle’s natural modes. In
this case, the spatial structure of the internal field
transforms, thus leading to a sharp increase in the
intensity within the focal zones (hundreds thousand
times for high-Q resonances), and the field localizes
near the surface of the spherical particle that leads to
formation of the periodic ring structures in the form of
standing waves (Fig. 1b). These near-surface resonance
modes, as was mentioned above, are called the
whispering-gallery modes.?! From the viewpoint of the
ray optics, the WG modes correspond to stable
congruences of the rays refracted by the spherical
surface, if the condition of the total internal reflection
is fulfilled for them. These rays are as if captured by
the particle and, passing along its surface, form a
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closed zone limited by the inner caustic from the one
side and the particle surface from the other side.22
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Fig. 1. Spatial distribution of the relative intensity of an optical
field inside a water droplet with the radius @y = 5 pm irradiated
by a plane wave with A = 0.532 um in the case of nonresonance
scattering (a) and excitation of the resonance TE7( » mode (b).

Resonance modes of the spherical cavities are usually
characterized by polarization of the light waves (TE or TH)
and two integer indices: mode number 7 and its order .
The physical meaning of these indices becomes clear
from Fig. 1b. The number of a mode is equal to the half
number of the maxima of the internal field over the
spherical angle 8, and the order number corresponds to
the number of rings in the radial direction. This form of
the field is a direct consequence of the fact that the
internal field is presented as an expansion in terms of
the particle’s natural modes (5). In the case of a
resonance, the term in the Mie series that has the
corresponding polarization and number dominates. As
this takes place, most of the energy of the resonance
mode, as in the nonresonance case, localizes in the
zones of the incident wave focusing that are related to
each other by the ring structure of the WG mode.

Theoretically, the Q-factor of the WG modes of
transparent spherical particles determined as the ratio
of the light field energy stored in the mode to the total
power loss in the cavity can be very high, especially,
for low-order resonances. In practice, however, it is
significantly limited by the absorption of the
particulate matter, as well as by imperfections in the
particle surface and nonlinearity of the refractive index
n, (see the review in Ref. 19). Therefore, the total
(effective) Q-factor is usually used, and its value is
determined as
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1/0=1/0:+1/0Q,, (10)

where Q, and Q, are the cavity Q-factors due to radiative
losses and absorption, respectively. From this equation it is
seen that the value of Q is determined by the smallest term.

The cavity Q-factor is closely connected with the
characteristic lifetime of the resonance mode 1, = Q /w,
which is roughly equal to 1079 — 1077 s at Q 0106 — 108
and the frequencies lying in the visible spectral region.

Figure 2 shows the dependence of the lifetime 1, of
different resonance modes (different mode indices and
orders) on the particle diffraction parameter.
Obviously, if the duration of the radiation pulse is less
than the lifetime ¢, < 1, then the optical field exists in
the particle even after the laser pulse terminates.

1078

1012

n 1 n 1 n 1 n 1 n 1 n 1 n 1
0 20 40 60 80 100 120 «x,
Fig. 2. Characteristic lifetime T, of different WG resonance
modes excited in particles vs. diffraction parameter x, of the
particle. The curve numbers correspond to the order of resonance
modes. Absorption of the particulate matter (water) is taken to
be 1, = 1078,

The time dependence of the relative intensity of
the optical field calculated for the TE7 1 resonance in a
water droplet with the radius @y = 5.97003 pm exposed
to the radiation pulses with the durations ¢, =100 ps
and ¢, = 10 fs is shown in Fig. 3.

The factor B was calculated at three points
corresponding to three characteristic areas inside the
particle. They are the area of the absolute maximum of
the field intensity (point 7) in the shadow focal zone
(r/ay=0.89; 8=0°), the ring zone of the WG mode
(point 2) near the particle surface (r/ay=0.89;
6 =90°), and the zone of nonresonance background
(point 3) at the central area of the droplet
(r/ag=0.40; ©=40°). The time scale in Fig. 3 is
normalized to the duration of the laser pulse, and the
intensity is normalized to its maximum value in the
particle volume.

It is seen from Fig. 3a that the time behavior of
the optical field intensity at the points 7 and 2 has the
pronounced resonance character and it decreases
exponentially with the constant T, equal to 0.6 ns for
the TE7p 1 mode. At the same time, at the point 3 the
intensity of the internal field follows the temporal
profile of the laser pulse (shown by the dashed line).
At a significantly shorter laser pulse (Fig. 3b), the
character of these dependences changes.
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Fig. 3. The inhomogeneity factor (normalized to its maximum
value) of the internal field as the TE7p; resonance mode
is excited in the particle by a pulse with the duration
t, =100 ps (@) and 10 fs (b). The plots are given for three
points inside the particle: focal zone near the shadow surface
(1), ring zone of WG mode (2), and the central zone (3).
Curve 4 shows the temporal profile of the pulse (in rel. units).

First, instead of the smooth fall off in the
resonance areas of the internal field, the intensity
oscillates about some practically constant level. This is
connected with the fact that the chosen interval of
consideration (350 fs) is much shorter than the lifetime
of the resonance mode T, and its relative lifetime is
long enough, 1, /¢, 06 0104,

Second, the presence of the intensity oscillations in
the resonance is the difference from the previous case.
In the WG ring zone, these pulsations are regular, and
their period correlates with the time needed for the
pulse to travel round the particle surface 21w, which is
equal to 050 fs in the considered case. This circumstance
indirectly confirms the physical interpretation of the
resonances in particles as a standing wave formed by
the interference between two in-phase waves propagating
along the particle surface in the counter directions.

As follows from the principles of spectral analysis
of signals, signal compression in time is accompanied by
broadening of its frequency spectrum. As known, in the
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case of Gaussian time profile of the signal (8), the
condition (#, Awy,) = 41 is fulfilled. Consequently, at
t, = 100 ps the spectral halfwidth of the laser pulse is
Aw, = 1.3 010" Hz, whereas at ¢, =10fs Aw, it is
already 1.3 01015 Hz, i.e., comparable with the pulse
carrier frequency . This leads to the situation that
the spectral function of the pulse response Es(w) from a
particle, at short pulses, takes the form different from
that in the case of a quasistationary excitation.

10° E Brax | TE70.1
10°F
103 E
102
101 1 " 1 " 1 n 1 n 1 n
-1 0104 -5010° 0 50107 101074 Aw
a
105 Bmax
lTE70,1

104

101 | 1 1 1 1 J
—-0.10 —-0.05 0 0.05 0.10 Aw

Fig. 4. The intensity of the internal field By, maximum all
over the particle volume, as a function of the relative

frequency detuning of the light wave Aw. The upper and lower
panels show two different situations with the laser pulses:
t, =100 ps (@) and 10fs (b). The arrows indicate the
positions of the most intense resonance modes.

Figure 4 shows the intensity of the internal field
Bp,.x, maximum all over the particle volume, as a
function of the relative detuning of the laser frequency

o
from the resonance value Aw= (w— w,) /w. It should

be noted that the range of the frequency detuning Aﬂoo
in Fig. 4 is different — it reflects the spectral width of
the diffracting pulse. It is seen from Figs. 4a and b that
at t, = 10 fs the pulse spectrum includes several quite
intense resonances corresponding to the WG modes. On
the other hand, at ¢, = 100 ps the spectral width of the
initial pulse is far narrower and contains only the
central resonance mode (@, = wy).
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Thus, the wide spectrum of a short pulse can
simultaneously excite several WG modes in the particle.
The fields of these modes overlap and thus cause the
time dependence of the total field intensity in the zone
of its maximum. This dependence manifests itself in the
form of characteristic wave oscillations. The amplitude
of these oscillations depends on the out-phasing of the
resonance fields. Calculations show that an increase of
the particle radius and the related closeness of the
frequency modes, on the spectral scale, lead to a decrease
in the amplitude of the observed intensity oscillations.

Using the Mie theory and the ray asymptotic of
the WG,22:23 we can estimate the mean number of
resonances that can be excited simultaneously in the
particle exposed to the radiation pulse with the spectral
halfwidth Acwy,. To do this, we introduce the term of the
spectral density of the resonance modes f;,(w) as the
number of most intense resonances (of both polarizations)
within a unit frequency interval:

TP PR WS-
) = s (= DV rctan{(nﬁ—”vz} g

Only those resonance modes are taken into account
here, whose field is concentrated inside the so-called
transient zone23 limited by the inner caustic with the
radius 7. = (n + 1/2) ¢/wy. The inner caustic, in its
turn, is formed by the rays incident on the inner surface
of the particle at the angle of total internal reflection.

Integrating Eq. (11) over the frequency interval
20w, we obtain the total number of the WG modes in
the particle Ny:

Ny, = J fo(@)dw' = K(n,) % o %g (12)

20w,

where K(n,) = 0.416 (n> = DV (n, — 1), 1 <n, < 2.

Figure 5 shows the number of resonances Ny, as a
function of the pulse duration ¢, connected with Aw, by
Eq. (9) for the particles of different radius. It is seen
from the figure that the pulses of pico- and
subpicosecond duration can induce multimode excitation
only in large particles, whereas small particles
(ap < 1 pm), because of their low resonance properties,
are capable of maintaining only one resonance mode
almost in the entire range of the pulse duration. The
fact that for such particles Ny <1 is not an error. It
indicates that resonance excitation of small particles is
possible only in the case of special tuning of the
frequency of the incident radiation to the resonance. At
the same time, at N >>1 the optical field inside the
particles is always in resonance with a number of WG
modes. Since these natural modes are independent, they
all can be maintained by the incident radiation. Note,
however, that the competition between different
resonance modes is always present, and the main factors
responsible for the competitive selection include the
effective Q-factor of the mode [Eq. (10)] and detuning
of a WG mode ) from the central frequency of the
laser pulse spectrum wy.
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Fig. 5. The mean number N, of the resonance WG modes,
which can be excited simultaneously in particles of different
radius @p =1 (1), 10 (2), and 50 um (3) exposed to laser
pulses with the duration ¢,. The dashed line corresponds to the

level Ny, = 1.

107>

It is also interesting, in studying the resonance
field excitation in particles by ultrashort pulses, to
study the maximum possible level of focusing of the
internal field as compared to the laser pulse intensity.
In other words, this means the dependence of the
maximum values of the inhomogeneity factor By,,, of
the internal field in the resonance mode on the laser
pulse duration. This problem is important, because the
factor B plays one of the key roles in the processes of
nonlinear interaction of waves in the microcavities, by
affecting directly the efficiency of their coupling. !9

As follows from the above-said, the peak of the
internal field intensity is located near the shadow
surface of the particle and this is caused by the
focusing properties of spherical surface. Since the
frequency spectrum of the laser pulse Aw, and the
spectrum of the WG modes Aw, = )./Q have finite
width, the efficiency of excitation of these resonance
modes is determined, finally, by the ratio of these
parameters. If the exciting pulse has a narrow
spectrum, such that Aw, <<Aw. (conditions of long
pulses or continuous emission), then its energy is
completely transferred to the resonance mode. In the
opposite case Aw, >>Aw,. (short pulses), the WG mode
perceives only a part of the pulse energy, which is
transferred by the spectral components from the
frequency region oy — Aw, /2 <w< wy + Aw. /2. The
intensity of the internal field and, consequently, the
efficiency of resonance excitation decrease in this case.

This reasoning is illustrated by Fig. 6, which
shows the dependence of the maximum inhomogeneity
factor Bpax on the parameter y= (Aw/Aw,) at
excitation of different resonance modes in spherical
particles. In this figure, one can see the transient zone
in the dependences plotted with the center near y= 1.
The decrease of By, with the shortening of pulse
duration (decrease of the parameter y) starts in this
zone. This tendency becomes even more obvious, if the
curves are normalized to the corresponding value of
Biax for every resonance that is achieved in the limit of
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continuous-wave radiation ¢, — . The result of such
normalization is shown in Fig. 7. To be noticed in the
first turn is the fact that as the parameter y varies in
the range 0.1 <y<10, all the curves drawn for
different WG modes converge into a single dependence
having the characteristic exponential drop profile. If we
again pass from the spectral domain to the temporal
scales, then the inequality ¢, > ¢, corresponds to the
condition of efficient excitation of resonances in the
particle y > 1. Thus, by analogy with the linear case of
interaction of traveling waves, we can assert that the
longer is the time of interaction of the basic wave with
the field of the resonance mode in the spherical cavity,
the more efficient is the energy transfer.

6

106 Bmax(tp)
5
105 4
4
104 3
103 2
1
102
1 Lot Ll aRem| vl | L il
1074 1071 102 y

Fig. 6. Maximum inhomogeneity factor By, of the optical
field of resonance modes excited in a particle as a function of
the frequency halfwidth ratio of these modes to the laser pulse
y. The following modes are shown: TEgs3 (1), TEzp 2 (2),
TEgsyz (3), TE1()012 (4)y TE70Y1 (5), and TE8511 (6)
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10 E Bmax(tp)/Bmzlx(oo)
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1072
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i =,
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Fig. 7. The same as in Fig. 6, but the inhomogeneity factor By.x
is normalized to the level achieved in the limit of continuous-
wave radiation (tp - o) for every resonance.

As noted above, the consequence of the pulse
spectrum broadening is simultaneous excitation of
several resonance modes in a particle. Multimode
excitation leads, on the one hand, to temporal
oscillations of the total intensity of the internal field
(see Fig. 3b) and, on the other hand, to some its
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increase due to the contribution of different modes at
spatial overlapping of their fields (just this is observed
in Fig. 7 at y <<1). The longer is the lifetime of the
central WG mode (mode with the frequency wy), the
smaller is this contribution.

Comparison of the dependences of field intensity
in different spatial zones of the resonance mode on the
parameter y demonstrates that the decrease in the laser
pulse duration has practically no effect on the intensity
of the internal field in the near-surface ring zone of the
WG mode (point 2 in Fig. 3), whereas in the focal zones
the field intensity changes, for example, for the TE7q 4
mode by almost three orders of magnitude (see Fig. 8).
This is explained by the fact that almost the whole
energy of the resonance mode is concentrated in the
zone of the absolute field maxima. Therefore, the
outflow of the light field energy from the central
resonance mode to the neighboring modes, which are
excited not that efficiently, affects most strongly just
the zone of the field maximum.

[ Bmﬂx(tp)/Bmax(W) /

107! F

1073

10™ 1073 107! 10! 103y

Fig. 8. Relative intensity of the optical field in different
spatial zones of the TEzp; resonance mode as a function of
the parameter y: focal zone near the shadow surface of the
particle (7) and ring zone of the WG mode (2).

3. Peculiarities of the nonlinear
interactions of optical fields
of femtosecond pulse in a microparticle

It was noted in the previous section that, owing to
wide spectrum of a femtosecond laser pulse inside a
microparticle, multiple WG modes can be excited inside
it, that is, the multimode excitation of resonance modes
can occur. The modes can generate nonlinear waves in
different spectral regions.

Let us first write the most general equation
characterizing nonlinear optical interactions in the
particulate matter. The effects of nonlinear optics of
ultrashort pulses are connected with the presence of the
third-order nonlinear polarization of the medium.! The
corresponding real vector of nonlinear polarization P
can be presented in the following form 24:
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P, = Ny O, E + ¥ EEE. (13)

In Eq. (13) the first term is responsible for the
contribution from Raman scattering to nonlinear
polarization of the medium, and the second term
describes the contribution due to the electronic
polarizability leading to the third harmonic generation.
The designations are the following: E is the real vector
of the electric field in the medium; Ny is the number of
molecules in a unit volume; Q, is the coordinate of

nuclei displacement in a molecule; )A(£3) is the tensor of
third-order electronic susceptibility of the matter. For a
fluid, the role of the second-order susceptibility
leading, in particular, to the second harmonic
generation is very small. Note that the electronic
susceptibility follows the field almost immediately. At
the same time, the SRS effect occurs in a certain delay.

Nonlinear polarization is the source of nonlinear
optical waves in the particle. The equation for the
electric field has the form

€, 02 E(r,t 410 0E(r,¢
rot rot E(r, ) + ‘21 6:21' : + %’ ((317; -
41 92
T2 Py (r, 0), (19

where €, and o are the dielectric constant and
conductivity of the particulate matter, respectively. The
medium is assumed homogeneous inside the particle.
The coordinate Q, is determined by the equation of
forced vibrations:

> On 2 30n
a2 T 5+ Qi On = F(D), (15)
1
where F(t)= nyOE? is the force; o is the

2m GQ
medium polarizability; m is the molecular mass; T is the
time of cross relaxation; Qg is the frequency of molecular
vibrations; ny, =(N{—N3) /Ny, Ny are populations of
the levels involved in the Raman active transition
1 - 2. The equation for n,, has the following form:

an_m Ny — 1 1 Ja an

ot " T, " amagoo, EF 5 o U6

where T is the time of longitudinal relaxation; # is the
Planck’s constant.
The solution for the coordinate Qy, is well known:
1
Om = om BQ exp (= t/T5) %

t
x I F(t') exp (t'/Ty) sinQp (¢t — ') dt'.  (17)

0

A peculiarity of the behavior of the coordinate Qy,
in the microparticle is that, due to the excitation of
WG modes in it, the characteristic properties of
ultrashort pulses (£, <<T, or f, < Q7) in no way do
manifest themselves. This is connected with the fact
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that time behavior of the function F for the WG modes
is determined by the modes’ lifetimes rather than by
the duration of a femtosecond laser pulse, as for the
case of propagation of a traveling wave.

Our consideration is based on the physical model,
in which whispering-gallery modes are formed as the
pulse passes through the particle (for the time
T, 02mag,/c), whereas no significant processes of
nonlinear scattering occur in the particulate matter. If
the modes formed by the femtosecond pulse include
such that their frequencies ®w meet the condition of
Raman resonance wg = wy — Qp, then the process of
amplification of one mode with the frequency ws by the
other mode with the frequency w; becomes possible.

For the time moment ¢ > ¢, the intensity in the
WG mode, in the absence of a nonlinearity, can be
presented as

Iyl 5,0 =Twg(oy s.t,) exp{—(t—t,) w5/ 0p s}.(18)

Here Qp ¢ are the Q-factors for the corresponding
modes, and they can be determined by Eq. (10). Since
the lifetime of the modes is T, 01079 = 1077 s, the process
of nonlinear interaction among the modes for such times
can be considered in the quasistationary approximation.
In this case, nonlinear polarization connected with the
SRS process is formed in the medium. The vector of
nonlinear polarization can be written as

P (wg) = X (wg) (E; EDEg + cc. (19

In Eq. (19), ELS are complex electric fields of the
modes L and S; x(3)(005) is nonlinear susceptibility of
the medium for the SRS effect. Under conditions of
SRS resonance

X(3) No Ty Eaig (20)
R Y 16mQg (A0,
The equations describing mode interaction at SRS
in a microparticle were derived in Ref. 25 in the
quasistationary approximation. We use here these results,

as well as the approximation of the given field of the
pump mode. For the intensity of the Stokes mode we have

Iwelws, t,) = Iwglws, t,) %

my (t - t,) wgl]
X exp EF' g IWG((,\)L, t’) dt' _—Qﬁmz
s
P O
v Iwe(wy, ;) Op y

= Iyg(ws, tp) exp 8 W

(t - t,)n
x[1—exp{- (t—tp) wy /O] _—Q_];_SQ’ 21)

¢gs Be
where ¢ = n, gs =

21 NO Wg TZ oa g )
Czsa mQR Qm 1S the
coefficient of the Stokes wave intensification; B, is the
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coefficient of spatial overlapping of the fields of the
modes L and S (Ref. 19).

Equation (21) shows that SRS leads to a decrease
in the damping factor of the Stokes mode. The maximum
intensification increment that is possible in the mode of
the Stokes frequency can be expressed as follows:

cgs Be IWG((*)Lv tp)QS
Gmax = n, W . (22)

A(J.)L
Let us assume that Iwg = I m, where I is the

maximum intensity in the femtosecond pulse. The width
of the WG modes is Aw; = wy / Q. Thus, we obtain

_ cgsBe 1y Qs wy H
max T oo g Qp AT

(23)

The value of Gy, depends significantly on the
degree of spatial overlapping of the modes — the
coefficient B.. To estimate it reliably, additional
investigations are needed. Assuming that B, =1, for
W = 3542 THz, wg = 2898 THz, g5 =103 cm/MW,
Os =0, and 1, =10 fs, we have that Gp, =1 at
Iy = 50013 W /cm2. Such intensity levels are typical of
the experiments on scattering of high-power
femtosecond pulses on water particles. !0

Let us consider how the field of the third harmonic
(TH) is formed in a spherical particle under the effect
of a femtosecond pulse. As a pulse of this duration
passes through a particle, nonlinear polarization of the
medium occurs at the triple frequency of every
harmonic in the radiation spectrum. This polarization is
the source of TH waves. If some Fourier component of
the pulse spectrum is in resonance with a WG mode,
then efficient nonlinear interaction between this
component and the field of its TH is possible, if the TH
is also the WG mode. Under such an interaction, a part
of energy of the initial pulse is converted into the TH
during the time the field exists in the particle. Thus, in
contrast to the SRS, when the pulse itself contains
components with the frequencies, whose difference is
equal to the frequency of molecular vibrations, for the
THG process the mode at the same frequency must be
formed. To estimate the process of formation of the WG
mode, we can use the approximation of the traveling
wave.26 For the intensity of TH that is generated as the
pulse passes through the particle, we can write

I3 = 5761 /ny Aje? IXOP 15 L2. (24)

Here L is the path length along the particle surface L =
= 2Ty; x(?’) is the component of the tensor x( ) responsible
for the TH generation. The estimates by Eq. (24)
indicate that for particles with the radii ¢y 010 pm the
experimentally measurable signal I3 can be achieved.
Consider the relation between the contributions
due to the SRS and the THG to the distortion of the
pulse spectrum. If the modes maintaining the SRS and
TH overlap, then the competition is possible between
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these effects. To determine what effect prevails in
the nonlinear interaction, we use the quasistationary
approximation. In this approximation, the parameter
characterizing the relation between the components
of nonlinear susceptibility, which determine the
contributions to the nonlinear polarization coming from
the effects of forced molecular vibrations and nonlinear
electronic polarizability, is as follows24:

Om xg’0 Ny Hz e
T x%o  48m EQm gt

For water 8 is equal to 0.65 (Ref. 24). This value
points to the fact that in water particles the contribution
coming from electronic polarizability to the process of
nonlinear interaction is somewhat larger than that from
the SRS.

From the above physical consideration it follows
that generation of high-Q components of the light field
caused by nonlinear electronic polarizability as well as
of the Stokes frequencies initiated by the stimulated
Raman scattering is possible for the femtosecond pulse
in a microparticle. A more accurate relation between
the contributions from these two processes to the general
pattern can be determined from a rigorous solution of
the problem with the allowance made for the spatial
and frequency interaction of the exciting and scattered
fields; this solution will be considered in the future.

It is obvious that exposing the particle to a group of
femtosecond pulses with the period Ty <1, where T, is
the characteristic lifetime of the mode taking part in a
nonlinear interaction, we can obtain quasistationary
excitation of stimulated emission. This distinguishes the
pulsed interactions of a femtosecond pulse with a particle
and the interaction with an extended medium, since in
the latter case it is important for the pulse repetition
frequency to be comparable with the frequency of
molecular vibrations of the medium.

Conclusion

The studies conducted in this work allows the
following conclusions to be drawn:

1. Excitation of resonance modes of the optical field
in weakly absorbing spherical particles by femtosecond-
duration pulses of radiation has some peculiarities as
compared with the case of long pulses (or continuous-
wave radiation). These peculiarities include the decrease
of the resonance intensities of the internal field, especially
in the zones of filed maximum (near the illuminated
and shadow surfaces of the particle) and the occurrence
of multimode excitation of resonance modes.

2. The efficiency of energy transfer from the incident
light wave to the field of a resonance mode depends on
the ratio between the spectral widths of the resonance
mode being excited and of the laser pulse. The smaller
is this ratio, as compared to the monochromatic wave, the
less efficient is the excitation of resonances, and the
intensity of the internal field in the zones of field
maximum decreases.
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3. The nonlinear optical effects of the SRS and
THG in microparticles under the action of a high-power
femtosecond pulse can occur in two stages. At the first
one (transient stage), whispering-gallery modes are
formed. At the second (quasistationary) stage,
quasistationary generation of stimulated radiation in
the Stokes and higher frequency, corresponding to the
third harmonic, spectral regions is possible independent
of the pulse duration.
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