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Diffusion-wave spectroscopy of light-induced fluxes
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Dynamic multiple scattering of laser radiation in a concentrated suspension of micron or
submicron particles is considered with the allowance for particle acceleration in the field of (a) other
(accelerating) laser beam and (b) probing radiation. It is shown that in both of the cases the methods of
optical correlation spectroscopy allow estimation of the velocity of light-induced particle motion to be
made by analyzing time autocorrelation function of the multiply scattered radiation. The method is
proposed to measure the characteristic velocities of light-induced particle flows based on the principles of
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diffusion-wave spectroscopy.

Introduction

It is known that if laser radiation of a sufficiently
high power is incident on a suspension of
microparticles, the particles may be accelerated in the
field of electromagnetic radiation. As a result, a
complex field of particle velocities is formed in the
medium. This phenomenon was many times observed in
the experiments (see, for example, Refs. 1-6).

In this paper, we show that light-induced fluxes
of particles in dense suspensions can be studied by use
of the diffusion-wave spectroscopy (DWS) technique.
This approach is now widely used to study the
dynamics of turbid media (such as colloidal
suspensions, gels, foams, emulsions, biological media,
etc.; see Refs. 7-14 and reviews in Refs. 15-17), in
which multiple scattering of light is quite an ordinary
event. Here we present only the key items of the
calculation scheme and discuss most interesting results.
A more detailed consideration can be found in Ref. 18
and in our papers 19—29.

1. Effects of microparticles acceleration
by laser radiation

Consider, for definiteness, a spherical particle of
the radius @ suspended in a liquid. Under the exposure
to laser radiation, the particle is affected by the
following forces:

— light pressure F),

— gradient force Fp,

— convection entrainment,

— radiometric pressure,

— light-reactive pressure.

If the particle size is less than the wavelength of
laser radiation, A, the equations for the force due to
light pressure and the gradient force have the following
form:
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where o is the particle polarizability; E is the strength

of the electric field in the light wave; k= 2m/A, nis
the unit vector parallel to the direction of the light
wave propagation. For a dielectric particle with the
dielectric constant g suspended in the medium with the

dielectric constant €, we have o » @ (e — gy /(e +2g).

In contrast to the forces described by Egs. (1) and
(2) and caused by the electromagnetic effect of laser
radiation, the effects of convection entrainment and
radiometric and light-reactive pressure are connected
with light absorption by the medium. Convection
entrainment arises at rather high absorption coefficient of
the suspension. Because the laser beam heats a
suspension inhomogeneously, liquid masses (being in the
field of gravity) start to mix inside a sample and thus
entrain suspended particles into this motion. The
radiometric  pressure arises because of radiation
absorption by the particulate matter and inevitable
heating of the particles. Since laser radiation is usually
incident on the medium from a certain side, the
temperature of one side is higher than that on the
opposite side, and this gives rise to the radiometric force.
Finally, the so-called light-reactive pressure is caused by
evaporation of the particulate matter that produces the
reactive force affecting the particulate frame.

There exist also other mechanisms of acceleration of
microparticles suspended in liquid or gas by laser
radiation (for example, laser radiation can initiate an
acoustic shock wave in the medium, and then this wave
affects the suspended particles3). We restrict our
consideration to the case under the assumption that
optical characteristics of the medium and the parameters
of particles that scatter light only insignificantly change
under the effect of laser radiation.
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2. Diagnostics of light-induced motion

of particles in dense suspensions by
DWS methods

Let us consider a cell filled with a concentrated
suspension of micron and submicron particles in a fluid
(Fig. 1).
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Fig. 1. Optical arrangement of the experiment.

A sufficiently high-power laser beam (wavelength
Ao, the radiation may be both continuous-wave and
pulsed) focused onto the left wall of the cell accelerates
the suspended particles along the axis z, as is shown in
Fig. 1. The probing beam is focused onto the front wall
of the cell. Multiply scattered radiation leaving the cell
is recorded with a detector. Let any dimension of the
cell far exceeds the mean photon free path in the
medium /*.

We assume that the particles accelerated by laser
radiation move within a narrow cylindrical zone d < ¢*
in diameter, whose position is described by the
coordinates xy and yg. It was just this scenario of
particle acceleration that was observed experimentally
in Ref. 2. To simplify the analysis, we assume that the
velocity v of particles is independent of their position
inside the zone of light-induced motion.

We propose that the diagnostics of the light-
induced flux of particles be performed with the other
laser beam (wavelength A, radiation is continuous-wave
or pulsed with the pulse duration 1, being much longer
than the photon survival time in the medium (p, ¢)71,
where [, is the medium absorption coefficient and ¢ is
the speed of light) focused onto the front wall of the
cell. The radius vector rg = (xg, ys, 0) determines the
point of incidence of the beam onto the cell wall.
Unlike the first beam accelerating the particles, the
second beam is called probing. Its power is assumed
rather low, therefore its effect on the suspended
particles can be neglected. Let r = (xg, ys, 0) is a point
at a medium boundary, at which the time
autocorrelation function G(1) = [(E(¢) E* (¢t + 1)U of
the scattered probing radiation is measured. We
describe the probing radiation in the scalar
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approximation, since it is thought to be significantly
depolarized. Without loss of generality, consider first
the particles, whose size is much smaller than the
wavelength of the probing radiation A. In this case, the
particles can be considered approximately as point-like
scatterers. Besides, we assume that the absorption
coefficient of the suspension at the wavelength A of the
probing radiation is negligibly small. Then, to describe
the multiple scattering of light in the suspension, we
should know only the photon mean free path ¢, which is
assumed not only much longer than d (this assumption
corresponds to the model of a narrow flux of particles in
the suspension), but also exceeding the linear dimension
of the focal spot of the probing beam on the cell wall
(this corresponds to strong focusing of the beam).

With the accelerating beam turned off, the
suspended particles take part in random Brownian
motion characterized by the diffusion coefficient Dg
depending on their size and suspension viscosity and
temperature.3? Turning on the accelerating beam gives
rise to a directed flux of particles superimposed on the
Brownian wandering. In this case, to calculate the time
correlation function of the scattered radiation, we can
use the equation!8

Gi() = Y I(rg, v, n) exp O 5 D, (O, (3)
1 ng1 % 2 E@

where Ilkd),zz(T)Dshould be calculated with the allowance
for the specific geometry of the flux of scatterers.
Assuming that the Brownian and directed motions of
particles are independent, we have

D¢ 2(00= 1o P00+ B V(DD (4)

where the first term describes the effects of
decorrelation due to the Brownian motion of scatterers,
and the second term describes the effects of
decorrelation caused by the light-induced motion. As
was shown in Refs. 7-10,

¢ P (0= Tlo n, 5)

where 1) = (4k2 Dg)~! and k = 21/,

The equation for the second term in Eq. (4) can
be found by using the method of integrals over
trajectories. 18 Since the cross size of the flux zone d is
assumed small (d < ¢), then inside this zone we can use
the single scattering approximation: every photon,
whose trajectory crosses the flux zone, takes part in
exactly one event of scattering on a particle accelerated
by laser radiation. Certainly, some photons may cross
the flux zone meeting no one particle, while others
experience two scattering events, but the probability of
such events is low and, moreover, we can expect that
their effects on G4(1) compensate for each other.

Consider the photon trajectory including =
scattering events with the mth event at an accelerated
particle moving with the velocity v and other events at
the resting scatterers. The phase difference between two
photons scattered along the same trajectory at the time
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moments separated by the period T is caused by the
displacement of the moving scatterer for this period
and, as can be readily seen, it is equal to

DOSE)(D) = k T, Ov) 8(x,, — x0) 8y — y), (6)

where e, is the unit vector setting the direction of the
scattered wave after the mth scattering event in the
chain of n events (m =1, ..., n), {&,, Ym 2Zmn} are the
coordinates of the point, at which the scattering event
occurs, and we assume that the particle flux is parallel
to the axis z, and its position is determined by the
coordinates xq and yq.

To find |Zk¢5,F)2(T)D we should sum Eq. (6) over
m =1, ..., n, square the sum, and average the result
over all possible photon trajectories in the medium.
Since the vectors e,, and v are independent, [{e,, O7)20=
= 92/2, and finally we have

m¢,(1F)2(T)D= % (kot)2 % B(x,, — x9) y,, — yp)d (7)

m=1

It can easily be understood that the sum in the right-
hand side of this equation is the unnormalized
probability P,(xg, yo) that the photon scattered n times
experiences one scattering event inside the zone of the
light-induced flux, and the mth term of this sum is the
unnormalized  probability  P,,,(xg, y¢) that this
scattering event has the number m. These probabilities
are obviously related as

n
P,(xg, yo) = z Pon(x0, o). (8)
m=1
In its turn, P,,,(xg, yo) can be presented as

[

pmn(xov y()) = j Pmn(xov Yo, z) dz, €)

—00

where P,,,(xg, yo, z) dz is the probability that the mth
scattering event takes place in the vicinity of the point
(%9, Yo, 2), and the integration over z reflects the fact
that the velocity of the light-induced flux v is directed
along the z axis.

In view of the above-said, Eq. (7) can be written
in the following form:

;A (00= 2 H;Hz Pyxo, 90, (10)

where T = 2(kv)~! is the characteristic time connected
with the presence of the light-induced flow of scatterers
in the medium.

In calculating P,,,(xg, ¥o, 2), Pun(x0, yo), and
P,(xg, yo), we should take into consideration only
those possible photon trajectories, which start from the
radiation source (point ry), finish at the detector (point
r), and on their way between these points they do not
cross the medium boundary. Note that P,(x(, yo) can
be also considered as the mean number of scattering
events inside the zone of the light-induced flux.
Calculation of P,,,(xg, yo, ) gives!8
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Pmn(x(): Yo, z) =
I(r57 {x07 y()y Z}y m) I({x()) y()r 2}7 r,n-— m)
- I(rs, 1, n)

L (11)

where to find I(rg, r, n), we use the diffusion
approximation, assuming the medium to be semi-
infinite!8
/2
I(ro r. 1) = Dg—ﬁ x
S y Dneznlj

E_ 3(x — xs)za E_ 3(x + x5)2%
. %xp 0 42n 0 exp O 402n *

0 3y — y)? + (2 — 2)?)
-

402n
Then, upon substitution of Eq. (12) into Eq. (11) and

making integration in Eq. (9), we obtain the following
result:

d
X exp o, (12)
O

2 2
P (x - 9xy n y
mn'X0, Yo 4102 m2 (n — m)z

g 3x4n O
—

X [ X
exp 0 40% m (n - m)0
B 3G - y0* 3wo-)?* 3 -y)’a
XexpD— 02 > 20 + 5 : L. (13)
O 40 m 40° (n — m) 40°n 0

Note that the transition to the case of scatterers of
a finite size (about the probing radiation wavelength A)
can be made by replacing the photon mean free path ¢
by the transport mean free path ¢* in all the above
equations. But, now the role of a single scattering
event in the above reasoning comes to a more complex
event, namely, several successive scattering events, as a
result of which the direction of propagation of scattered
radiation becomes random (the number of single
scattering events needed for this to occur is obviously
equal to ¢*//¢). In this case, the considered theoretical
model is correct only in the case of ¢/* > d.

Assume, for simplicity, that y =y, =0, i.e., the
probing beam is focused onto the origin of coordinates
on the front wall of the cell and the time
autocorrelation function of the diffusely scattered light
is measured at the same point. Besides, let xg = (*
assuming that the laser beam incident on the medium
leads to formation of the isotropic source of radiation at
the distance ¢* from the medium boundary.

Consider now the dependence G{(1) at different
velocities v of the light-induced flux. Figure 2 shows
the normalized time autocorrelation functions
g1(1) = G1(1) /G{(0) calculated for v =0, 1, 10, and
100 m/s. To derive them, equations (3)-(5), (8),
(10), (12), and (13) were used at Ty = 10"%s; this
value is typical of water suspensions of polystyrene
submicron spheres under normal conditions. To get an
idea on the value of the characteristic times Tg
connected with the directed flux of scatterers, assume
A = 0.5 um. Then Tf varies from 16 ps at v = 1072 m /s
to 1.6 ns at v = 100 m /s.
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Fig. 2. Normalized time autocorrelation function of diffusely
reflected radiation (xg = 5¢*, yo =0, 19 = 1074 5).

At 0 =0 (absence of the flux) ¢{(1) decreases
with the increasing T only because of the Brownian
motion of the suspended particles. In the presence of
the flux (o > 0), the decrease of ¢g;(1) becomes faster.
As is seen from Fig. 2, the higher o, the faster g;(1)
decreases. This means that measurements of ¢{(1) can
be used for diagnostics of the light-induced fluxes in
randomly inhomogeneous media (for example, to
determine the velocities of such flows).

It should be noted that the main contribution to
the decrease of the correlation function is due to the
Brownian motion, whose intensity is the same for all
curves in Fig. 2, rather than due to the scatterer flux.
The cause of this is that the Brownian motion involves
all particles, whereas the directed light-induced motion
involves only a small fraction of the particles.
Therefore, the directed motion affects only a part of
scattered photons, whereas the Brownian motion affects
all the scattered photons. The rate of decrease of ¢g4(1)
turns out to be sensitive to the velocity v of the flux at
T <Tf and even at T OTg. At larger T, as is seen from
Fig. 2, the rate of decrease of g¢y(1) is largely
determined by the Brownian motion of the scatterers.

The above analysis suggests at least two different
methods for determination of the characteristic velocity
of the light-induced flux from the measured
dependences ¢4(t). First, at small T, as is seen from
Fig. 2, the derivative dg;/dt increases with the growth
of ©. Therefore, analyzing the behavior of g¢4(1) at
small T, we can determine the velocity of the flux.
However, this method of measuring v may prove to be
hard-to-implement at high ©. Another method of
determining v is to measure the maximum difference Ag
of the autocorrelation function ¢g4(t) in the presence of
the flux from its value in the absence of the flux. This
difference is shown in Fig. 2 as a function of v. One
can see that Ag is almost a linear function of In .
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3. Ponderomotive action of light
in DWS problems

Let the half-space z> 0 be filled with the
concentrated suspension of microparticles in a fluid
(particle volume density 0.01 < ® < 0.1). The medium
is characterized by the photon mean free path ¢ and the
transport mean free path ¢*, the absorption coefficient
U,, and the dynamic viscosity30

n=n0H+%CDH (14)

where ng is the viscosity of the fluid. In the absence of
external forces, the particles of the medium are
considered resting, i.e., their Brownian motion is
neglected. Let the medium be exposed to a laser pulse 1
(wavelength A in the fluid, pulse duration T, peak
intensity Iy, A <d < ¢*, direction along the z axis)
focused onto the zone with the cross size d (Fig. 3).
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Fig. 3. Optical arrangement of the experiment.

This pulse gives rise to the light-induced flux. As
earlier, we believe that T, is much longer than the
photon survival time in the medium.

If Iy is low enough, the pulse experiences multiple
scattering on the particles of the medium, and a part of
its energy is absorbed (causing insignificant heating of
the medium), while the other part leaves the medium.
As this takes place, the time coherence of the scattered
radiation does not worsen as compared to the beam
incident on the medium (here we neglect the thermal
motion of the particles).

If Iy is sufficient to give rise to the particle
motion in the medium, then the radiation is scattered
on moving particles, rather that resting ones. This leads
to worsening of the time coherence of the scattered
light field. The mechanism of acceleration of the
particles in the field of a laser pulse can be different
(see Section 1), and at this stage of analysis it makes
no sense to concretize it. We assume, however, that the
mass, shape, volume, and other parameters of
microparticles do not change significantly under the
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effect of laser radiation on the time scales about the
photon survival time in the medium.

Determine now the character of particle motion
under the effect of laser radiation. Since we consider
strong focusing of the beam (A <d < /*), then the
point of the beam incidence on the medium can be
approximately considered as a point-like source of
particles outgoing in the direction of the axis z. Due to
hydrodynamic interaction, these particles entrain
neighboring ones, and this leads to formation of the
complex field v(r) of particles’ velocities in the medium
(formation of a jet). We believe that the presence of
the medium boundary at z =0 has only insignificant
effect on the field v(r) in the regions far from the
boundary (at z > ¢*). To find v(r), consider the
equation of motion of a viscous suspension filling the
entire space in the approximation of the suspension
incompressibility30

% rot v+ (v 0O) rot v — (rot v OO) v =v Arot v. (15)
Here v =n/p is the kinematic viscosity of the
suspension; p is its density. This equation can be solved
analytically only in a few cases. However, in the above
situation of a thin jet of microparticles from the point
{0, 0, 0} in the direction of the axis z (problem of
submerged jet, see Ref. 30), the solution can be found.
In the spherical coordinate system and not very high
velocities of the jet, it has the form30

P cosB

U=__0=
ro4mn or 6

_P sinB

- 8T[I’] r ) v(pz O) (16)

where P is the total momentum flux in the jet. Under
our conditions, it is equal to the momentum given by
the laser radiation to the medium particles in a unit
time. The flow lines corresponding to Eq. (16) are
shown in Fig. 4.

To calculate the time correlation of radiation after
multiple scattering in a randomly inhomogeneous semi-
infinite medium, in which the field of scatterer
velocities has the form (16), let us use the method of
integration over tlrajectories.18 First, consider the case
of point-like scatterers (scatterer size a <<\).

For the velocity field (16), calculation of the
stress tensor30 gives

P cosB P cosB
Oy = — 22 Ogp= Opp = AT
0,9 = Oy = Ogg = 0. 17

To find Gy(1), we now have to calculate the
integral 1213

1 . 4 O
£(n) =12 I % o%k(n)gpn(ro, r, 1) &y, (18)

substitute it into the equation!213

D 2()0= 12—5 k2 2 2 ng(n), (19)

S.E. Skipetrov and M.A. Kazaryan

and then calculate the correlation function by the
equation!2,13

i 1
Gi(D) = 5 (e, v, w) exp [ 5 DI, (20)
n=1
where I(rg, r, n) is the mean intensity of radiation at the
point r generated by the point-like source of coherent
radiation situated at the point ry and scattered n times.

Fig. 4. Pattern of flow lines corresponding to the problem of a
submerged jet.30

In Eq. (18) the integration is performed over the
entire volume of the randomly inhomogeneous medium;
P, (1o, r, r) is the fraction of photons scattered n times
and passing from the source at the point ry to the point
r through the point ry. For definiteness, we believe that
the scattered light in the considered case is measured in
the immediate proximity from the point of incidence of
the laser beam onto the medium boundary. Then we can
take approximately that r» ri ={0, 0, 0} and use the
equation for p,(ry) = p,(0, r{, 0) obtained in Ref. 14 in
the diffuse approximation:

(o) = —3— oy B 21 1)
P r1 _2TE€2 nry eXpD [2 nD'

Substituting Eqgs. (17) and (21) into Eq. (18) and
extending the integration in Eq. (18) to the area
r1 > ¢, in which the light scattering is well described
by the diffusion approximation, we find from Eq. (19)

D 2(D0= (1,/1)2 f(n), (22)
where
T, = \/F) nex/ P (23)

is the characteristic coherence time connected with the
appearance of the light-induced jet;

f(n)=exp§-%§+%Ei§—%§, (24)

Ei(x) is the integral exponential function.3! The
function f(n) determining the role of the processes of
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different order turns out to be independent of the
problem parameters and dependent only on the number
of scattering events n. The function f(n) vanishes at
n =0 and tends to unity at n - o (Fig. 5). Therefore
T. is the characteristic coherence time corresponding,
strictly speaking, to the infinite number of scattering
events. The coherence time longer than t. corresponds
to scattering processes involving a finite number of
scattering events.

Using the equation for the Green’s function
I(ry, r, n) obtained in the diffusion approximation '3
[see also Ref. (12)] and assuming that the point of
incidence of laser radiation onto the medium ry and the
point r, at which the time correlation function is
measured, are separated by the distance on the order of
¢, we derive the final equation for G{(1):

GOy —5 exp i 5 B3O b, mfl, @)
n=

where D$2(1)0is given by Eq. (22). As was noted
above, the analysis performed above is valid for the
case with the scatterer size @ << . If a OA (or @ > M),
the analysis becomes far more complicated. However,
the approximate results corresponding to this case can
be obtained by substituting ¢* for ¢ in all equations.

1

f(n)

0.01 Ll Lol Lo
1 10 n 100 1000

Fig. 5. The factor f(n) determining the dispersion of the phase
difference of photons scattered by the same particles of the
medium at time moments spaced by T [see Eq. (24)].

4. Discussion

Figure 6 shows the normalized time
autocorrelation functions of the backscattered radiation
G1(1) /G1(0) for different values of the product ./
(for definiteness, we believe that ¢ is the same for all
the three curves, and the absorption coefficient p, is
different). Note that the absorption coefficient p, has a
relatively weak effect on the normalized correlation
function of the scattered light. The effect of absorption
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manifests itself largely through the increase of P [and,
consequently, the decrease of 1., see Eq. (23)] with the
increase of M,. The difference between the curves
corresponding to different values of the absorption
coefficient is caused by the fact that at small p,
(M, << 1) a sufficiently large portion of scattered
radiation is due to high-order scattering processes,
which contribute significantly to decorrelation of
radiation. At a relatively large W, (4, O¢71), as is seen
from Eq. (25), negligibly low intensities correspond to
large n (because of the presence of the term — W, /n in
the exponent); therefore, the main part of the scattered
radiation is caused by low-order scattering processes.
Although this case is not fully correctly described in
the diffuse approximation we use, Eq. (25) gives the
physically clear result as before: the correlation
function now decreases not so fast as at small ,,
because the photons scattered less times are
decorrelated more weakly. Note that at 1/1, >>1 the
curves corresponding to different W, become parallel.
This is connected with the fact that at large T the time
autocorrelation function is affected most strongly by
the photons scattered several times and, as a result,
almost insensitive to low absorption in the medium.

III\‘IIII‘I\II‘I\I
0 50 100 150  (1/1)2

Fig. 6. Logarithm of the normalized time autocorrelation
function g4(1) = G1(1) /G1(0) vs. the squared 1/7. ratio for
three different values of the absorption coefficient y, at a fixed
momentum P transferred from the electromagnetic field to
particles of the medium in wunit time: p,=0 (1),
Ma=0.1271(2), p,=0.5 071 (3).

It should be noted that the dependence of |Zh¢,21(r)|]
on T has different forms for the Brownian motion of
scatterers [I2k¢,(1B)2(T)DD 12] and the light-induced jet
[mq),‘f”(r)mm 1]. Thus, the effects of laser acceleration
qualitatively change the form of the time correlation
function of the diffusely reflected radiation. At a
relatively low intensity, the Brownian wandering and the
light-induced motion of scatterers can be considered
independent. Then, the equation for mq;ﬁ(T)D with the
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allowance made for both types of the motion can be
written as a sum of two terms in Eq. (4).

Let us estimate the conditions under which the
ponderomotive effect of the light is significant in
calculation of the time coherence of the scattered light.
To do this, we, obviously, should concretize the main
mechanism of acceleration of the suspended particles in
the field of laser radiation. For example, for polystyrene
submicron balls suspended in water, light pressure plays
the main role, because the absorption is low in
polystyrene, and all other acceleration mechanisms are
connected just with the absorption of light. Therefore
P» W /c, where W is the radiation power, and ¢ is the
speed of light in the medium. The second term in Eq. (4)
exceeds the first one, if the radiation power is higher
than some critical value W.(1, n):

stnkg T n
W > WC(T, n) » 4cl 3a X T f(n) s (26)

where kg is the Boltzmann constant, and T is the
temperature of the suspension. In derivation of Eq. (26),
the equation for the diffusion coefficient of spherical
particles in suspension30 Dy = kg T /(6Tne) was used.
As is seen from Eq. (26), the critical power
depends on both the number of the scattering events n
and the delay 1. Analysis shows that the ratio n/f(n) is
minimum at n =235, therefore the effects of laser
acceleration are maximum for the photons scattered
several (about five) times. To estimate this, take
a 00.1 pm and the volume concentration of particles
equal to 1%; then ¢* 0200 pum. For water n 01073 Pa [3;
the radiation wavelength A is taken 0.5 pm. As a result,
at n =35 the critical power W, varies from 15 W at
T=1ps to 0.5 W at 1 =1 ms. These critical values of
the radiation power are small enough for the effect
described in this paper to be observed experimentally.

Conclusion

The results presented in this paper strongly suggest
that the technique of the diffusion-wave spectroscopy can
be used to study the fluxes of microparticles induced by
high-power laser radiation in concentrated suspensions. If
the power of a strongly focused laser beam exceeds
1 —10 W, then the effects of laser acceleration of
microparticles can  markedly modify the time
autocorrelation function of the light reflected diffusely
from micron- and submicron particles. We hope that
theoretical analysis performed in this work will stimulate
experimental research in this field.
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