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Laser sensing theory with multiple scattering taken into account in the small-angle approximation
is used to separate out the component of the lidar signal associated with the first two orders of
scattering. For media with a strongly forward-peaked scattering phase function, simple formulas for the
doubly scattered signal which take account of the geometrical parameters of the lidar are derived. The
role of the diffraction component and the geometrical-optics component of the scattering phase function
in the doubly scattered signal is examined. The accuracy of this approximation is estimated as a function
of the detector field of view for different optical depths of the scattering layer.

Introduction

The first step in the generalization of atmospheric
laser sensing theory for conditions of increased
atmospheric  turbidity was the double scattering
approximation.!=3 Despite significant recent progress in
the solution of laser sensing problems for optically
dense media with multiple scattering taken into
account, low-order scattering (including polarization)
effects are still employed to study propagation of lidar
signals.45 Because of the simplicity of the associated
analytical description, the lidar equation is widely used
to retrieve the optical-microphysical parameters of the
medium®8  under conditions of relatively low
atmospheric turbidity. For coarsely dispersed media
with a strongly forward-peaked scattering phase
function, an approach is developed here to treat
multiple scattering effects in analytical form assuming a
small deviation of the sensing beam from the initial
direction of propagation (the small-angle
approximation9~12).

References 11 and 13 provide numerical
relationships  between the small-angle multiple
scattering and single-scattering components of lidar
returns as functions of the disperse composition and
density of the medium for detectors with a variable
field of view (FOV). The data presented in Ref. 11 can
be used to estimate quantitatively the conditions of a
lidar experiment for which the multiple-scattering
background signal will be weak and, hence, the
contribution of low scattering orders can be expected to
dominate. Under such conditions, the formalism of the
small-angle approximation of transfer theory can serve
as a convenient basis for further simplification of the
lidar equation, allowing a direct decomposition of the
lidar signal into components with different orders of
scattering. To round out the theory developed in
Refs. 11 and 13, an account of low scattering orders
should be given a special treatment in the small-angle
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approximation. Results of this study are the subject of
this paper.

1. Geometry of the experiment
and the initial lidar equation

Suppose that (a) a medium, characterized by high
anisotropy of scattering, occupies the half-space z > 0;
(b) the source and detector are located in the plane
z=10 a distance d apart; (c) their optical axes are
parallel; and (d) the detector points in the positive z
direction. We also assume a unidirectional point source
and a step-function detector response with circular
symmetry in the angular and spatial coordinates. Given
a pulse O(¢) with energy W transmitted into the
atmosphere, for the viewing geometry considered here
the power of the lidar return is given by

Rl‘ yI‘
P(z,d, V., R, = T[CWT Br(z) x
x J oW, d, zy,, R,) ®(v) dv, (1)
0

where the kernel of the integral transform
OW, d, 2y, RY) = v~ Jovd) Ji(vzy) J1(VR,) (2)

is defined as a product of three Bessel functions of the
first kind and zeroth Jo(.) and first J{(.) order;

®(v) = F2(v), where

z

FW) =exp [~ 1(2) + g(V)], 1(2) = I e(s)ds; (3)

0
z
g(v) = J o(z — 5) Tvs) ds, (4)
0
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F(v) is the optical transfer function (OTF) of the
€(z), 0(z), and B(z) are the extinction,
and backscattering coefficients, which

depend on the one spatial coordinate z, and ;(p) is the
Hankel transform of the small-angle scattering phase
function. The lidar parameters include the entrance
pupil radius R, and the FOV v, of the receiving system.
The derivation of equation (1) and the assumptions for
which it is valid are discussed in detail elsewhere.9:13
Here we only note that equation (1) takes account of
small-angle multiple scattering and large-angle single
scattering, including backscattering.

medium,
scattering,

2. Approximation of low orders
of scattering

We remove the factor exp [-21(z)] from the
function ®(v) and represent the remaining expression as
a series in powers of 2g(v):

[2
D(v) = ¢ 21 z g(v)] (5)

n=0

Then, the zeroth-order term of series (5), @y =
= ¢ 212 represents the single-scattering contribution
to the lidar return, with the double-scattering
contribution being given by

(V) = 2721 g(v). (6)

Generally, the contribution of the (n+1)th order of
scattering is expressed as

2 n
o, (v) = e 21@ % (7

The contribution of higher-than-first orders of
scattering to the lidar return is determined by the
difference ®¢.(v) = ®(v) — ®y. In the discussion that
follows we concentrate on the equation resulting from
substitution of two terms of expansion (5) of the
function ®(v) into (1). Physically, this relation
expresses the situation in which a photon, on the path
from the lidar to the scattering volume where a single
scattering has occurred in the backward direction, will
suffer not more than one small-angle scattering event.

Substituting ®y = e 2@ for ®(v) in Eq. (1)

yields
Rr yI'
Pz, d, ¥, R) = eW —— Bn(2) 212 x
x J O, d, zy;, Ry) dv. (8)

This is the usual lidar equation in the single
scattering approximation with allowance for the
geometry of the experiment. The integral of the product
of Bessel functions
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B(d, 2%, R) = [ OO, d, 2y R) v (9)
0
defines the geometrical lidar factor and is expressed in
terms of elementary functions. As shown in Ref. 14, the
integral  B(d, zy;, R;) defined by Eq.(9) s
proportional to a two-dimensional convolution of circles
with radii R, and zy,:

B(r, zy,, R,) = Uzyr(r) # URI_(r), (10)

1
2T R, 2V,

where U,(r) is the unit step function in the xy plane

= 2 2
Ua(r):HLOSr<a,r \x2 +y Can

0, r>a

Since the convolution of two circles is equal to the
area of their intersection region, it follows from
geometrical considerations that

U, (r) #x Up(r) =

, r>a+b,
_ 2, 0<r<Oa-0b0,a<b, (12)
B 2 0<r<Og-b0 a>b,

EzB+b2u—absmy, O¢—bO<r<a+b,

where a, B, and y are the angles in the triangle
subtending the sides @, b, and r, respectively. From
formulas (10) and (12) it follows that for

z> (R, +d) /Y, (13)

the power of the singly scattered signal is given by the
well-known expression

Pi(2) = W5 228, Bl2) ¢ 212, (14)
where S, = Tl'R% is the area of the receiving aperture.
Condition (13) defines the far sensing zone.

The double-scattering contribution in the small-
angle approximation is accounted for by an extra term
obtained from the general formula (1) by substituting
®(v) for ®(v) in (6):

Rr yr
PZ(Zy dr Yrs Rr) = 2T[CWT BT[(Z) 672'[(2) X

x G(d, y,, R)), (15)

where
G, v, R = _[ oW, d, zy;, R) g(v) dv. (16)
0

We now substitute the function ¢(v) into

equation (16), with the transform %) preliminarily
expressed in terms of the scattering phase function
x(y). This leads to the following integral representation
of the function G(d, V;, R,):
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z

G(d, ¥, R,) =21 J o(z —s) ds x
0

[

x I D(d, sy, Ry, zy;) x(y) ydy. (7)
0
Let us discuss in more detail the properties of the
weighting function D(.) in the integrand in
expression (17). This functions is defined by an
improper integral of the product of four Bessel
functions of the first kind:

00

D(d, a,b,c) = I v Jo(dv)Joav)J {(bv)J(cv)dv. (18)
0

Reference 15 represents the function D(d, a, b, ¢)
as defined by formula (18) in a form more convenient
for practical calculations. Specifically, the representation
of D(d, a, b, ¢) equivalent to formula (18) has the form
of a finite integral

b+c

D(d,a,b,c) = J Ald, r,b) A(r,a,c) rdr (19)
0

of a product of functions of the form

A(r,a, c) = I Jort) Jolat) Ji(ct) dt.  (20)
0

From a comparison of formulas (18) and (20), it
follows that the evaluation of the integral of the
product of four Bessel functions reduces to an
evaluation of A(r, a,c¢) as defined by equation (20),
i.e., to an evaluation of integrals of products of three
Bessel functions. Like B(r, a, b) in equation (10), the
integral A(r, a,c) defined by equation (20) can be
given a clear physical interpretation. As shown in
Ref. 14, A(r,a,c) is proportional to the two-
dimensional convolution

A(r,a,c) = U.(r) == 8(r — a), 1)

2Tt ac
where d(r) is the Dirac delta function. Applying the
method of integrating expressions with & functions in a
two-dimensional  domain,’® the convolution in
equation (21) can be represented in terms of elementary
functions, and the integral A(r, a,c) can finally be
written as

0, rza+tec,
0, r <0a — cO, a>c,
CA(T, a, C) = D 1, r <Oa — CD, c>a, (22)

D/H,O<Da—c@ r<a-+ec,

where a is the angle in the triangle with sides 7, @, and
¢ subtending the side c:

2 2 2
a®+r2 -¢c
= arccos ———— . (23)
2ar
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It can be clearly seen that the behavior of the
integral A(r, a, ¢) (20) is determined by the dependence
of the angle a (23) on the ratios @/c and r/c.
Reference 15 presents values of a(&, n) /1 calculated as
a function of & =r/c for a set of different n=a/c
values.

Relations (19), (22), and (23) provide a complete
solution of the problem of calculating the weighting
function D(d, sy, R;, zy;) in formula (17) which takes
account of the double-scattering contribution to the
lidar return. We now consider a few characteristic cases
in which the role and importance of some parameters
influencing the function D(d, sy, R, zy;) can be
estimated.

2.1. Scheme with coincident transmitter and
receiver axes

For this scheme, d=0 and according to
formulas (19) and (22) the integral D(d, a, b, ¢) (18)
simplifies to
b
I A(r,a,c) rdr = B(b, a, ¢), (24)
0

S =

D(d=0,a,b,c) =

where B(b, a, ¢) is the function described above in the
discussion of the single-scattering approximation [see
Egs. (10)—(12)]. As in the single scattering case, we
confine ourselves to a consideration of the far sensing
zone (13) only. Then, using equations (14), (15), and
(17), we obtain the following simple formula for the
ratio of the single- to double-scattering signal power,
my = P2/P1Z

z

m2=4T[j o(z —s) ds x

0
|j1/s r/s D
x [ j x(y) ydy + j QGsy) x(y) ydy[}  (25)
DO r/s D

where
ry =2y, — Ry, ry =2y * Ry,

Q(r) = [U,y, (1) == U (N]/S,, (26)

Q(7) is the normalized convolution of circles in a plane,

defined by formulas (12), and S, = TR?. The function
Q(7) decreases monotonically from 1 to 0 as r varies
from 7y to 7. Dividing the y integration region into
two parts as is done in formula (25) is equivalent to
splitting the ratio my into two summands:

my = my + my. 27)

By interchanging the orders of integration in
formula (25), the individual terms in formula (27) can
be rewritten as
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Y 0 O
my = 4T [T (2) J x(y) ydy + J Tse(ry/y) a(y) ydy[] (28)
|:| 0 \ |:|

2

" U :
my = 41‘[% x(y) ydy J Q(ys) a(z —s) ds +
1

/Yy
o /Y 0
+ j x(y) ydy j Q(ys) oz — s) ds[], (29)
Y2 ri /Y O
where
1,.(2) = I o(s)ds; yi =Y, —R./z, Yo=Y, + R, /z. (30)
0

Further simplification of formula (25) can be
achieved by estimating the influence of the receiving
aperture size. As R, — 0, the integration region in the
second integral in brackets in formula (25) shrinks to a
point. Therefore it can be expected that for a
sufficiently small receiving aperture radius R, the
in (27)
wherefore we can set my = my. The numerical estimates
presented in Sec. 3 support the wvalidity of this
simplification for the receiving aperture areas typically
used in lidar sensing applications. We conclude this
section by rewriting formulas (28) and (29) for the
case where the scattering medium represents a
homogeneous layer located a distance H from the lidar
and having a constant scattering coefficient oy:

second summand my can be neglected,

, g ® O
my = 4nigy (z — H) a x(y) ydy + oy J x(y) dy[ (3D
O
wy

BJZ (z=H)y
my = 4ATIqy a x(y) dy I Q@) dr +
(!

T

00 ry |:|
+ J' x(y) dy I Q(r) dr[} (32)
W 4] D

where w =7 /(z - H), )y =ry/(z — H), while r{ and
79 are given by formulas (26).

2.2. Bistatic scheme in the approximation
of small R,

In the previous section, we already considered the
case of a small entrance aperture of the receiving
system for the case when the transmitter and receiver
axes of the lidar coincide, i.e., when d = 0. Here, we
generalize the solution for the function my to the case
d #0. We begin with the general formula (17). In the
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bistatic sensing scheme for d # 0 and small R,, the
function D(d, sy, R, zy;), as in the previous section,
has a simpler form:

R
D(d, sy, Ry, 2v) =5 AW, sy, 2y). (33)

This can be proved, for example, by expanding the
Bessel function J{(bv) in formula (18) into a Taylor
series and retaining only the first term. Then, recalling
the definition of the function A(d, sy, zy,) in (22), we
readily obtain the following expression for the function
my:

z

m2=4nj o(z —s) ds x

0
mv/s‘ { P2/ n
x DJ' x(y) ydy + I Wisy) x(y) ydy[]  (34)
Uo p1/s O

where
P1 =Zyr_d, p2=2yr+d;

(sy)? + d? — (zyp)?
2dsy

The weighting function W(p) /1 in formula (34)
decreases monotonically from 1 to 0 as p varies from p4
to py. The structure of formula (34) is analogous to
that of formula (25). Therefore, all subsequent steps in
the derivation of formula (34) follow from formulas
(27)—(29) and (31), (32) for the function m, (25) after
substituting py, P, and the function W(p) /T in them
for rq, 5, and Q(#), respectively. In particular, for
d = 0 we have

W(sy) = arccos (35)

z Vr//S [I
my = 4TI I a(z —s) ds DJ x(y) ydy[} (36)
o [l

i.e., exactly the same result as was obtained in the
previous section.

3. Numerical results

In this section, results of calculations of the
function my(y,) from the formulas of the preceding
section are presented, and the accuracy of the
considered approximation is estimated as a function of
the optical properties of the scattering medium and
geometry of the experiment. In all the calculations
presented below, the scattering medium is modeled as a
homogeneous layer with constant optical
characteristics, composed of particles with radius
R =10 um. The calculations were performed for the
wavelength A = 0.55 pm. The scattering phase function
was calculated in the small-angle approximation with
the diffraction (D) and geometrical-optics (GO)
contributions taken into account separately.!3:17 The
experiment is characterized by the following
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geometrical parameters: distance between the lidar and
the nearest layer boundary H = 1 km, range z = 2 km,
and distance between the optical axes of the source and
receiver d = 0.

3.1. Influence of the receiving aperture radius

The influence of the receiving aperture radius R,
on the behavior of the function my(y,) is illustrated in
Figs. 1 and 2. These dependences were calculated
assuming unit optical depth. Figure 1 shows the
behavior of the function myp(y,) calculated in the
diffraction approximation. Curve 7 in Fig. 1 depicts the
behavior of the function myp(y,) for R, =0, while
curves 2 and 3 describe the function myp(y,) and its

component m'ZD(yr) (31) for receiving aperture radius
R, =0.2 m. We note that for the z, d, and R, values
considered here, the far zone condition (13) is satisfied
for y, > 0.2 mrad. Curves 7 and 2 in Fig. 1 nearly
coincide, while myp(y,) is dominated by the mayp(y,)
component.

| map(yy)

0.8

0.6

0.4

0.2

L L 1 I L 1 L 1

0 2 4 6 8 Y, mrad

Fig. 1. Dependence of the functions mayp(y,) (solid line) and

mon(y,) (dashed line) on the detector FOV vy, for R, = 0.2 m
and R, =0 (circles) for a homogeneous layer with optical
depth 1= 1.

| mo(y,)
08 L 20V

0.6 +
0.4 +

0.2 |

1

0o 2 i 6

8 Voo mrad

Fig. 2. Influence of receiving aperture size on the dependence
my(y,) without (curves 7 and 7') and with (curves 2 and 2')
the geometrical-optics component of the scattering phase
function taken into account; curves 7, 2 depict the functions
mop(y,) and my(y,) for R, =0, and curves 7', 2' depict the

functions map(y,) and my(y,) for R, = 0.2 m.
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Figure 2 compares the dependences myp(y,) and

mop(y,) (curves 1, ') obtained in the diffraction
approximation for R, = 0 and R, = 0.2 m, respectively,
with the analogous dependences my(y,) and ma(y,)
(curves 2, 2') obtained with the GO contribution to
the scattering phase function taken into account. It can
be seen from Fig. 2 that the scattering phase function
has much greater influence on the accuracy of the
my(y,) calculation than the size of receiving aperture.
Therefore, R, =0 will be assumed throughout the
subsequent calculations. Taking into account the
finding of the previous section that the functions my(y,)
have identical analytical descriptions for R, # 0 and for
d #0 when R, is small, slight departures from d =0
can be neglected.

3.2. Relationship between diffraction and
geometrical-optics components of the scattering
phase function

We consider in detail the relationship between the
contributions of the diffraction component and the
geometrical-optics component of the scattering phase
function to the function my(y,). The function my(y,), as
well as its D and GO components for T =1, is plotted
in Fig. 3. In the behavior of the function myp(y,)
(curve 2), there is an angular region y, < 6 — 8 mrad
where this function grows rapidly followed by a slow
approach to its saturation level mype =1. This
component gives the greatest contribution to the total
dependence my(y,) (1) over the entire range of the
detector FOV y.. As VY, decreases, the difference
between my(y,) (1) and myp(y;) (2) becomes
insignificant, amounting already at y, = 10 mrad, for
example, to only 6.5%. Since the D component of the
scattering phase function carries information on particle
sizes, this fact can be of use in particle size retrieval
from lidar returns for appropriately chosen detector
FOVs. The component mygo(y,) (3) becomes
significant for large y,. However, the larger is y,, the
greater is the contribution of higher scattering orders;
hence the more questionable becomes the validity of
this approximation of ms(y,) at larger ;.

N mz(Vr)

I L I L 1 . I . 1 " J

0 5 10 15 20 25 Y, Mred

Fig. 3. Separation of the function my(y,) (7) into diffraction
mop(y;) (2) and geometrical-optics mygo(Y,) (3) components
for a homogeneous layer with optical depth T = 1.
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3.3. Validity estimate as a function of medium
density

The most important question in the practical
application of this approximation is its error as a
function of the optical density of the medium.
Obviously, as the turbidity of the medium grows, the
contribution of higher scattering orders will also
increase, and the rate of this increase will be larger for
wider detector FOVs y,. For a quantitative estimate of
this effect, we compare the dependences of my(y,)
obtained in the double-scattering approximation with
the function m(y,) calculated from exact formulas in
the small-angle approximation. The comparison is
shown in Figs. 4 and 5 for two optical depths, T =1
and 2. In the figures, the effects caused by higher
scattering orders are compared with the effects of
choice of the small-angle scattering phase function. The
scattering phase functions used in the comparison differ
in that they either include (curves 7 and 2) or do not
include (curves 7’ and 27) the GO component. As
expected, the contribution of higher scattering orders to
the lidar signal increases significantly with increasing
detector FOV vy, even for a relatively low medium
density. This is a more significant factor than choice of
the scattering phase function. Nevertheless, as can be
seen from the figures, for relatively narrow detector
FOVsy,, the approximation my(y,) may be quite
satisfactory. Usually, this is the case when the total
level of multiple scattering in the lidar return is low.

L m(y,) 2
1.2 1
>
0.8} T
0.4F
n 1 n 1 n 1 n 1 n J
0 2 4 6 8 v, mrad

Fig. 4. Comparison of the dependences m(y,) for the optical
depth T = 1, obtained in the small-angle approximation with
all orders of scattering taken into account (curves 7 and 2)
and with the first two orders taken into account (curves 7" and
2'); the calculations were performed with the scattering phase
function in the diffraction approximation taken into account
(curves 7 and 7') and with the geometrical-optics component
also taken into account (curves 2 and 2').

It is useful to estimate the conditions under which
the contribution of the first two orders of multiple
scattering to the lidar signal are not lower than some
preset level. The corresponding dependence of the ratio
of the lidar signal power in the double-scattering
approximation to the total signal in the small-angle
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approximation,  &(y,) = [Pi(y,) + Py(y.)]/P(y,), s
plotted in Fig. 6. From Fig. 6 it can be seen that for
the optical depth T1<1 the double-scattering
contribution makes up over 90% of the total signal
power, provided the detector FOV does not exceed
3.4 mrad. As vy, increases to 8 mrad, the double-
scattering contribution decreases to 80%. As the optical
depth T increases to 2, &(y,) will remain unchanged
only if y, is not greater than 2.06 mrad. And finally, for
the limiting value considered here, 1=3, and the
limiting level &(y,) = 0.8, the range of permissible
angles Y, caps off at 1.04 mrad. The estimates presented
here are in good agreement with calculations based on
other methods (see, e.g., Ref. 18).

m(yr) 2
1.6 !
o
1.2 F 1
0.8
0.4
0 1 2 3 4 Y, mrad

Fig. 5. Comparison of dependences m(y,) for the optical depth
T = 2, obtained in the small-angle approximation with all
orders of scattering taken into account (curves 7 and 2) and
with the first two orders taken into account (curves 1" and 2');
the calculations were performed with the scattering phase
function in the diffraction approximation taken into account
(curves 1 and 1) and with the geometrical-optics component
also taken into account (curves 2 and 2').

62(yr)
1
0.81
0.6r 2
0.41
3

02 n 1 n 1 n 1 n 1 n ]

0 2 4 6 8 'y, mrad

Fig. 6. Relative contributions of the first and second
scattering orders to the total lidar signal in the small-angle
approximation for optical depths T =1, 2, and 3 (curves 1-3).

The numerical estimates presented here are readily
extended to a wider range of situations using similarity

properties for the characteristic m(y,).!1!  For the
function my(y,), the quantity
R =z
== 37
p NP Yr
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serves as a generalized parameter. For p = const, the
function my(y,) keeps constant value. Therefore, a
displacement of the layer, for example, while all other
parameters are kept fixed, leads to a transformation of
my(y,) of the form

my(2', y,) = mylz, (2 /2) y]. (38)

Similar transformations follow by varying the
other parameters entering into formula (37).

Conclusion

Let us summarize the main results and conclusions
of this work. Starting from the lidar equation, written
with all scattering orders taken into account in the
small-angle approximation, we have obtained a specific
equation describing the behavior of a lidar signal when
only two orders of scattering are taken into account.
This equation includes a simple analytical dependence
on the small-angle scattering phase function in the form
of a linear integral transform. The kernel of this
transform is determined by the geometrical parameters
of the receiving-transmitting system of the lidar
including the entrance pupil radius, detector FOV, and
distance between the optical axes of the receiver and
transmitter of the lidar. More attention is given to the
monostatic sensing scheme with coincident transmitter
and receiver axes, as well as the bistatic scheme with
parallel receiver and transmitter axes for small receiver
aperture size.

For the obtained equation, the influence of
different factors is quantitatively estimated, as is its
range of validity. As model calculations show, the main
geometrical factor influencing the second-order
scattered signal is the detector FOV, whereas the size
of the receiving aperture can be neglected in many
typical cases. Comparison with calculations of the lidar
return from exact formulas in the small-angle
approximation demonstrates the applicability of the
double-scattering approximation for optical depths up
to 3 for sufficiently narrow detector FOVs. Here the
smallness of the detector FOV is a relative parameter
related via similarity relations to the sizes of the
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scattering particles, distance to the layer, and
penetration depth to the layer. For small detector
FOVs, for which the approximation considered here
gives reasonable results, the lidar signal in the small-
angle scattering phase function is influenced mainly by
the diffraction component of the phase function.
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