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Account for the air-water interface in the problem
on determining the source function of the radiative
transfer equation within a spherical model
of the atmosphere—ocean system
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A spherical model of the atmosphere—ocean system is represented by a mathematically equivalent
model, in which light reflection, transmission, and refraction at the air—water interface is expressed
through optical parameters of an elementary volume of the medium in the radiative transfer equation
(RTE). These parameters are introduced using the theory of generalized functions and the Fermat
principle. The source function for the RTE in this model is expressed through continuous linear
functionals in the form corresponding to the absence of ray bending and refraction. Thus, the new
method to account for refraction based on deformation of the system of spherical coordinates is
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generalized to the interface.
Introduction

Theoretical simulation of the field of solar
radiation scattered by air and water shells of the
atmosphere—ocean system (AOS) is based on solution of
the boundary-value problem for the radiative transfer
equation (RTE). Formulation of the problem on solar
radiation transfer in the AOS assumes consideration of
a large number of parameters determining the character
of light interaction with a medium both inside it and at
its boundaries, including the air—water interface. In
this connection, approximate methods based on some
simplifications, such as, for example, the plane medium
geometry, absence of light refraction, single interaction
of the radiation with the Fresnel interface, etc. (see
Refs. 1-3 and references therein), have received wide
acceptance. Radiation exchange between media with
the plane Fresnel interface was considered in Ref. 4.
The multiparameter character of the problem and
difficulty of obtaining simple solutions motivate the
search for new approaches accounting for the spherical
geometry of the system, light refraction, and singular
properties of the boundary conditions and the source
function.

In this paper, we present the nontraditional
approach to consideration of refraction and an interface
in the problem of finding the source function in the
RTE. If the radiative transfer problem is formulated in
the spherical atmosphere—ocean system with the
allowance made for ray bending, refraction, and
reflection at the Fresnel interface, then this approach
allows the source function to be represented in the form
not including explicitly the refraction effect and the
interface.
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1. Source function of the radiative
transfer equation accounting for
refraction

In a medium with variable refractive index n, the

RTE

d /1 B 1

3G -2) ™
expresses the law of intensity I variation at the element
ds of the ray trajectory.> In Eq. (1) the intensity
I = I(r, s) is a function of the radius vector r of a point

in space and the vector s of the direction of radiation
propagation. The source function is®

B(r, s) :ﬁ fx(r, s-s') I(r, s') dQY, 2)
41

where s’ is the direction vector of the ray incident on
an elementary volume at the point r, ss’ = cosy, y is
the scattering angle; dQ' is the element of the solid
angle in the vicinity of the s’ vector.

At every r point, the medium is characterized by
the extinction coefficient €, the quantum survival
probability (single scattering albedo) A = ¢ /¢, where o
is the scattering coefficient, and the scattering phase
function x(s-s’) describing the angular distribution of
the radiation scattered by the elementary volume.

The boundary conditions represent the character of
intensity variation at the lower boundary (LB) of the
AOS and at the air—water interface, as well as specify
the solar radiation flux incident on the upper boundary
(UB) of the atmosphere
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[0}» = TEF)L 5(5' - So) , (3)

where 8(s’ — s() is the Dirac’s delta; sq is the vector of
direction of the solar ray onto the atmospheric UB, nF,
is the solar constant, and A is the radiation wavelength.
Hereinafter the subscript A is omitted.

Taking into account that the source function
B = B(r, s) accounting for refraction has the form (2)
(Ref. 6) the same as with its neglect, let us separate its
component By = B(r,s) caused by nonscattered
radiation. For this purpose, let us represent the RTE
solution in the form of the sum I = I; + I4 of the direct
I; = I(r, s) and diffuse I4=1I4(r, s) components and
separate the equation for I; from Eq. (1):

d (L) _ A)

ds (n2) -E ( n2) (4)
For the diffuse component intensity [I4, the

radiative transfer equation

d (1 B I
E(n—‘%):s(ﬁ—n—;) (5)

includes the source function B = By + By determined by
the integral equation in the form of the sum of two
terms:

A
B = T fx(r, ss') Iq(r, s) dQ' +
47

+ ﬁ f x(r, s-s') I;(r, sp) A, (6)
47

where the diffuse component By (first term) keeps the
form (2).

The component By determined by the second term
in Eq. (6) corresponds to the single scattering sources
and includes the unknown singular function I;(r, sj),
where s{ is the vector of direction of the nonscattered
solar ray at the point r. Obviously, in the AOS with
the variable refractive index, the direction s{ of the
radiation incident on the elementary volume at the
point r does not coincide with the initial direction s of
the solar ray at the atmospheric UB because of
refraction. The function I;(r, s§) can be found by
integrating Eq. (4) with the boundary condition (3). It
should be noted that integration in Eq. (4) should be

done over the actual curvilinear trajectory L of the
solar ray as it passes from the atmospheric UB to a
fixed point P(r). The solution of Eq. (4)

I.
I = n—; = nF exp(— f g ds) 3(s' — sp) =
L
= nF exp(— 1) 8(s' — s§) (7N

includes, as parameters, the optical distance 1 = 1(r)
corresponding to the ray path up to the point P:
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T= f e ds, €))
L

and the direction sj#s; depending on the actual
distribution of the refractive index n along its
trajectory. Let us use the concepts accepted in the
theory  of  generalized functions’” to  define
nF exp(— 1)8(s’ —sj) as the density of the angular
distribution of solar radiation incident onto an

A
elementary volume and select Ex(r, s-s') to be the

main function. Then determination of the single
scattering source function Bi(r, s) in Eq. (6) can be
reduced to calculation of the functional

By(r,$) =1 [ x(r, s xF exp(— 1) 8(s' — sg)d =
47

=2 (r, s'sp) nFexp(- 1) (9

at a fixed solar ray direction s{ as a parameter of the
scattering phase function x(r, s-sj).

Equation (9) specifies the scheme of determining
the source function B(r, s) in the medium, when the
refractive index n(r) continuously depends on the
spatial coordinates. The distribution n(r) in the AOS
has a discontinuity at the air—water interface, and the
source function B(r, s) should account for this fact.
Below we present a generalized scheme for determining
the source function B(r,s) for multilayer and two-
medium spherical models of the AOS with the stepwise
distribution of the refractive index, n(r), over radius.

2. Consideration of the interface in a
multilayer spherical model of the AOS

Consider the AOS model consisting of spherically
symmetric layers of finite geometric thickness with
discretely varying value of the refractive index. The
air—water interface is one of the numerous interfaces
between layers with different n. The trajectory of
quanta in such a medium is a broken line meeting the
Fermat principle. The Fermat principle expresses the
condition, according to which a ray in a medium with
the wvariable refractive index chooses the extreme
trajectory. Mathematically, this is reduced to the
requirement that the first variation of the functional
expressing the optical length of the ray [° (the
superscript “o” means “optical”) along its path between
two arbitrary points Py and P, takes the zero value8:

[)2
sf nds = 0. 10)
[)1

The integral in Eq. (10) is also referred to as the
reduced ray length.9 Therefore, below we will use this
term to avoid confusion with the term “optical path”
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for 1. Inside every layer, the Fermat principle leads to the
law of rectilinear light propagation. As the ray intersects
the interface between layers with different n values, this
principle gives the Snell law of light refraction?:

nq sin61 =ny SiIl92, (11)

where 6; and 0, are, respectively, the radiation
incidence and refraction angles, ny and n, are the
refractive indices in the first and the second layers
along the beam path. The relative refractive index
noy = ny/nq takes the values > 1 and < 1.

From the law of conservation for the light ray as a
ray tube,!0 taking into account the law of refraction
(11), we can easily find the equation of a ray invariant

I I, —1 I
Io:_gz *—— == (1 — R) = const, (12)
ny nq nq

that determines the distribution of the reduced
I
intensity /° = 2 over the ray trajectory in a transparent

layered medium. The subscripts i, », and t denote,
respectively, the intensity of the incident, reflected,
and refracted light; R = R(nyq, 04) is the coefficient of
Fresnel reflection at the layer interface.9 Thus, in the
layered model medium, according to Eq. (12), the
reduced intensity I° decreases not only due to the
effects of light absorption and scattering inside the
layers, but also due to the reflection loss, because
1 = R <1 at nyy # 1 at the layer interface. This factor
will be referred to as Fresnel extinction in the medium.
The effect of Fresnel extinction manifests itself at
spatially separated points. The Fresnel extinction
coefficient has a singularity at these points and it is not
defined in the classical meaning. However, it can be
defined from the viewpoint of the theory of generalized
functions”? in the Sobolev — Shvarts meaning

', 9 ==, g). (13)

Here the functional (f’, g) is a derivative of the
singular generalized function f defined at the main
function ¢g. The function f' is called the distribution
density.

The ray direction s is described by the spherical
coordinates (8, ¢), where 9 is the polar angle of the
direction vector and ¢ is the azimuth angle. According
to Eq. (13), determine the optical thickness 1f = t5(r)

due to Fresnel extinction along the ray path L in the
medium from the atmospheric UB to the point P(r) as
a functional

N
(r) = f ep ds = f Z 1 — 1) 8(9 — 8 ds =
7 P
N
= z TF]'(VJ‘, 9]"), (14)
j=1
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where

N
ep(r, 9) = 2 g 8(r — 1) 3(9' — 87) (15)
j=1

is used as a singular distribution density. This
parameter will be called the index of Fresnel
extinction. The subscript j =1, 2, ..., N here is the
serial number of the layer interfaces (j — 1th and jth
ones) along the path of a solar ray to the point P(r); r;
is the radius of the jth layer interface in the spherical
coordinate system with the origin at the planet’s center;
87 is the polar angle of the direction vector of the ray
incident onto the jth layer interface; tp; = —In(1 — R;)
is the Fresnel optical thickness corresponding to
intersection of the jth interface; R; = Rj(nyy, 61) is the
Fresnel coefficient of reflection from the jth interface.
When calculating Rj(nyq, 64) at every interface, the
angle of ray incidence 0} can be found as ©}

= arccos |cos 9]’|
With the allowance for the layer interfaces
according to Egs. (14) and (15), determination of the

v

total optical distance t°(r) along the ray path L can be
reduced to simple summation t°(r) = 1p(r) + 1(r) of the
Fresnel optical thickness tp(r) at the layer interfaces
and the optical thickness t(r) due to absorption and
scattering inside every layer.

Let us pass now to determination of the direction
s{ of the nonscattered solar ray reaching the point P(r).
In the spherical AOS model, the allowance for
refraction does not change the azimuth angle ¢ of the
direction vector, that is, ¢j = @y (Ref. 8). The polar
angle 9 of the ray direction at the point P(r) differs
from its initial value 8¢ by the refraction angle B,
namely, 9y =98¢ — B. In the layered AOS model, the
ray deflects from its initial direction at discrete
trajectory points located at the layer interfaces.
Therefore, the refraction angle B = p(r) along the beam

path L can be determined, similarly to the Fresnel
optical thickness (14), in the sense (13) as a
functional:

N
By = [ pds= [ X B;3(r— ) (8 — 9pds =
U o j=1
L L

z

=Y Bi(r;, 9. (16)
=1

7

Here the ray refraction angle B;(r;, 9) at the jth layer
interface is determined from the law of light
refraction (11) by the following equation:

B;(rj, 87) = 8" — arcsin (sin 8’ /ny) . 7

The cosine of the scattering angle cosyj = s-s{ for the
scattering phase function at the point P(r) with the
allowance for refraction can be determined from the
equation of spherical trigonometry
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cosyp = cos 9 cos 9y + sin 9 sin 9 cos (¢ — @), (18)

where 3¢ and ¢( are the polar and azimuth angles of
the direction vector sy of the ray incident onto the
elementary volume; 9 and ¢ are the corresponding
angles for the ray s scattered by the medium.

The singular component due to Fresnel reflection
at the layer interfaces is taken into account as an extra
intensity in the angular scattering pattern. Let the
points rj, belonging to the interfaces be included in the
elementary volume w». The density of the angular
distribution of the scattered radiation %xl:(y) due to

the reflected component is obviously the following:
ﬁ ’ A ’ A
I xF(Y) = Z R]' 8(r — 7’]') (' — Pj)S((P - (P]‘)7
jo

p = cos 9, (19)

where the summation is performed over the points
within the elementary volume. Here o and xp(y) are,
respectively, the index and the phase function of
Fresnel scattering. They will be defined in the next
section.

The functional

0]
e°B{(r, s) = Z_n x9(r, s, sp)nF exp(—1°) (20)

follows from Eq. (9) with the allowance for Eqs. (14),
(16), and (19). In Eq. (20), c° = c + of is the total
scattering index, and the scattering phase function
x9(r, s, sj) is a weighted mean function of the form
x° =73 q;x; that is determined through the weighting

1

coefficients ¢g; of the scattering components (3 g; = 1).

1

3. Consideration of the interface
in two-medium spherical AOS model

The two-medium spherical AOS model follows
from the multilayer model considered above as a result
of limiting transition to the infinitely large number of
system layers. Consider how the equations for 1°, 9,

GO
and I x°(y) determining the source function change at

such a limiting transition. Thus, the trajectory of the
solar ray transforms from the broken line to the
bending one with only one break at the air—water
interface. At the levels corresponding to air and water
shells, the relative refractive index ny; becomes equal
to unity, the reflection coefficient is R =0, the ray
invariant (12) takes the form I°=1/n? = const, and,
consequently, breaks at the ray trajectory disappear. At
the air—water interface, to the contrary, the Fresnel
reflection coefficient keeps its value R # 0 and beam
refraction occurs, because nyq # 1.
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Let us find the optical length t° for the point P
located, for example, at the level r in the water
medium. Toward this end, let us first derive the
condition, every point of the actual trajectory of the
solar ray should meet. From Eq. (4) in the spherical
coordinates (see Refs. 6 and 12), the component of the
differential operator including the refraction term can
be presented as

ol 1 1\ol ol 0
(8_> = —sin9 (— —> A _adsor 1)
AR

ror.)0S 09 or os -
From Eq. (21) we can obtain the differential
equation

09 1 1 0
ar = tan 8(7 - ) =—tan 9 o In (nr), (22)

C
including the refraction curvature of the ray

1 0
" o In n. (23)

Here r. is the length of curvature. Separate the
variables in Eq. (22)
_ 9Gsin8) _ onr)

sin = nr 24

and integrate. As a result, we derive the equation of the

invariant
V)
C = nr sin9 = nprp sin9p = const, (25)

the actual ray trajectory in the AOS from the
atmospheric UB to the fixed point P should obey. Here
nprp sindp is the invariant value at the point P, which
can be at an arbitrary level », above or below the air—
water interface. Equation (25) is obviously applicable
to the air—water interface as well. Just at » = rp, the
law of refraction (11) follows, as a particular case,
from Eq. (25). In a homogeneous medium at n = np,
the particular equation for the invariant

C =rsin® = rpsin9p = const (26)
for the straight ray trajectory follows from Eq. (25).
Take the invariant (25) into account in the equation for

V)
the element ds of the curvilinear ray trajectory L and,
as a result of substitutions, we obtain

t(r)=fads=

L

e nr dr

_ f g dr _ f
/ \/1 - sin29 / N ()2 = (nprp sin 9p)2
L L

.27

It should be emphasized that the optical thickness
t(r), as an integral over the curvilinear ray trajectory,
can be found by Eq. (27) regardless of where the point
P is located: in the air or water medium. In accordance
with the requirements of the Fermat principle,
following Ref. 12, let us change the curvature of the
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coordinate lines and pass to the reduced radius 7° = nr.
Equation (27) in this case is reduced to the form!!:

r(r)=I er dv (28)
L

e

characteristic of a straight ray trajectory, that is, in the
absence of the air—water interface. It can be concluded
from here that the nontraditional method!2 of
accounting for refraction through deformation of the
system of spherical coordinates in accordance with the
refractive index profile can be generalized to the air—
water interface. When using such a coordinate system,
the trajectories of rays in the AOS become straight
lines.

Now consider derivation of the equation for 8} at
the point P. It was already mentioned that this problem
can be reduced to determination of the refraction angle
B(r). It should be noted that the refraction component
of the differential operator, after deduction of the
geometric curvature of the coordinate line, follows from
Eq. (22). Expressing then tan$ through sin9 and
taking into account the invariant (25), we can find that

B(r) = f B'ds = f - %(ln n) tan9 dr =
L

L

= f—%(ln " —— (29)
v \ (nr/C)2 — 1

At the parts of the curvilinear trajectory L in the
0
air and water shells, the parameter E(ln n) is a regular

smooth function of radius and therefore its integration
over levels in Eq. (29) leads to gradual increase of 9
determining the direction of the solar ray. At the air—
water interface at the point of ray refraction, the

0
refraction curvature 5(ln n) in Eq.(29) has a

singularity in the form of the delta function. Therefore,
integration of Eq. (29) at the interface, representing
the property of the invariant (25) mentioned above,
leads to the jump change of the ray direction by the
angle following from the refraction law. Thus

dr

0
8=9+ [=(nn)——_ (30
{67 \[(nr/C)2 -1

It is obvious that for a homogenous medium at
n = const the second term in Eq. (30) is zero and
Sf):S().

(0]
The angular diagram Z—nxo(y) of radiation

scattered by the elementary volume can be expressed in
the ordinary way, if the point P is in the air or water
shell. If the point P lies at the level 7y of the air—water
interface, then the angular radiation density is
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determined, as known,5 by the singular brightness
coefficient

plu, @, W) = ﬁ R(nyy, p') 8(p — u)d(o’ — ¢f),

W =y, = cos9,. (31)

The delta function in Eq. (31) has the meaning of
the Fresnel scattering phase function xp(r, ss') /4n. It
is determined in accordance with the normalization
condition

1
= Jarde= 8- us(e' — op)da = 1. (32)
47 47

The reflection coefficient R of the air—water
interface can be expressed through the brightness
coefficient p(p, @, ') as a functional

1
=;f Pk, ¢, W pdp =
21

= f R(nyq, W8 — )8 = 0p)dQ = Rnyy, py, 9,)  (33)
4m

at the selected values p, = p' and ¢, = ¢}.
The Fresnel scattering index of is determined
according to Eq. (13)

R = f opds = f R(nyy, 1, ¢,) 8(r—ry)ds =
L L
= R(n%, My (Pr) (34)

as a linear density of the reflection coefficient. Here
n201 =ny(r =7ry). The path element in Eq. (34) is
selected along the direction of the reflected ray. It is
obvious that at of determined in such a way the total
scattering index is 6° = ¢ + oF.

The scattering phase function x° = x°(r, s-sj) for
the elementary volume can be presented as a sum of the
regular and singular components by use of the
following integral equality:

ﬁ f c°x°I(s§) dQ ds = 41—n ff oxl(sp) dQ ds +

4mo 4o

+ ﬁ f opxpl(s) dQ ds. (35)

4mo

Integration in Eq. (35) is made over the elements
dQ of the solid angle (in the directions of scattered
radiation) and the elements ds of the elementary
volume thickness. Upon integration at I(s{§) = const,
from Eq. (35) we have

x0 = x°(r, s:s)) = qx(r, s-sp) + qpap(r, ssf). (36)
The weighting factors here

Too R

q:TGU+R7 qF:TGUJ’_R (37)
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are expressed through the optical thickness of the
elementary volume 1sy due to scattering and through
the reflection coefficient R of the air—water interface.
For the regular functions, from Eq. (37) we have the
well-known particular representation of the weighting

factors in the form of the ratio ¢; = 5;/Y. o;.
i

It follows from the above-said that within the
accepted definitions and designations used of optical
characteristics of the elementary volume, the equation
for the total source function in a two-medium spherical
AOS model, as in the multilayer spherical model, can
be reduced to the following form:

0]
eB0 = Z—n f xo(r, s-8') Iq(r)dQ +
4

0
+ Z_n x°(r, s-sp)nF exp(—1°) (38)

corresponding to the model of the medium at n = const
(Ref. 11), when there are no interface between media
and the ray trajectory is straight.

Conclusion

The spherical model of the atmosphere—ocean
system is reduced to the mathematically equivalent
model, in which reflection, transmission, and refraction
of light at the interface between the media are
expressed through optical parameters of the elementary
volume in the radiative transfer equation. These
parameters are derived using the theory of generalized
functions and Fermat principle. The parameters
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determining the source function for the radiative
transfer equation in such a model are represented in the
form corresponding to the homogenous medium without
interface, where ray trajectories are straight lines.
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