A.I. Borodulin et al.

Vol. 15, Nos. 5-6 /May—June 2002,/ Atmos. Oceanic Opt. 453

Errors in the emission rate estimated from solution of the
inverse problem on the diffusion of an atmospheric pollutant
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When solving inverse problems, experimentally measured pollutant concentrations are usually
used, but these values are subject to statistical scatter, which generally arises due to the turbulent nature
of the pollutant diffusion process and due to measurement errors. In this paper we estimate the errors in
determination of the emission rate of a pollution source. The practical examples presented demonstrate
the importance of considering this factor in tackling specific tasks.

Diffusion of aerosol and gas pollutants in the
atmosphere is usually described by two classes of
problems. The first incorporates direct problems, when
it is needed to find a pollutant concentration field from
known source characteristics. The second class includes
inverse problem, when it is needed to find the type,
coordinates, and emission rates of pollutant sources
from pollutant concentration measured at some control
points. In the limits of Eulerian approach to description
of the process of turbulent diffusion, the most fruitful
method is the use of a semi-empirical equation?:
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where C and U; are the mathematical expectations of
the pollutant concentration and wind velocity
components; K;; are the components of the tensor of
turbulent diffusion coefficients (we assume K;; =0 at

i#7); O is the term describing sources of pollution;
x = x4 and y = x5 correspond to horizontal coordinates,
and z = x3 correspond to the vertical one; ¢ is time. A
bar denotes statistical averaging over an ensemble.
Repeating subscripts mean summation. The direct
problem is solved in the rectangular domain G with the
surface S consisting of the lateral surface X, the lower
base Ty (at z =0), and the upper base T (at z = H).
The system of the initial and boundary conditions for
Eq. (1) looks as follows:
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where Vg is the particle sedimentation rate; B is the
parameter describing pollutant interaction with the
surface.

An efficient method for solution of the inverse
problems was developed by Marchuk.4 This method is
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based on application of the equation conjugate to semi-
empirical equation of the turbulent diffusion:
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with the following system of the initial and boundary
conditions:
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Dual representation of the functional4
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allows solution of a wide spectrum of inverse problems
of pollutant diffusion.
In the theory of Marchuk’s method, the solution

of the direct problem (1) E(x1, Y1, 21, T) for
0 = 008(x — x0) 3(» — 1) 8(z — 29) (1) ,

where xg, yg, and z, are the coordinates of the pollution
source, and Qy is the amount of the emitted substance
(emission rate), and the solution of the inverse

problem (3) E*(xo,yo,zo,O) at
P=8(x—x)8(y—y)(z—2)8(t - T)

are of basic significance. In this case, according to

Eq. (5),
C(ay, y1,21,T; %0, Y9, 20,0) =

:QO E*(.Xo,yo,20,0;.7C1,y1,2'1,T). (6)
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The function Cs determines the contribution of a
unit-rate (Qg = 1) source located at the point xg, yg,
and z; and operated at t=0 to the pollutant
concentration at the point x4, y¢, z1 at the time ¢t = T.

The Green’s function Cs is usually called the
sensitivity function.

The inverse problems are usually solved based on
the use of experimentally measured pollutant
concentrations that have some statistical scatter caused,
generally, by the turbulent nature of the pollutant
diffusion process! and by measurement errors. This
paper is devoted to estimation of the errors in the
emission rate of a pollutant source due to the factors
mentioned above.

Let a pollutant source with the coordinates xq, ¥,
and zy be operated at the time ¢=0. In Ref. 3 we
formulated the inverse problem of determining the
coordinates of a pollutant source and considered some
examples. Therefore, in this paper we believe that x,
Yo, and z, are known and dwell mostly on the problem
of determining the unknown emission rate of a
pollutant source through solution of the inverse
problem. In the general case, the measured parameter is
the integral concentration J which is a random
variable:

J= J.C(t)dt, (7)
0

where C(t) is the instantaneous value of the pollutant
concentration. Applying Eq. (7) to the operation of
taking mathematical expectation, we obtain

J= JE(t) dt. )
0
Combining Egs. (6) and (8), we have

J(x1,y1,21)=0y JE* dt=0yJ+(x9,50,20),  (9)
0

where J, is the sensitivity function of the integral
pollutant concentration. We can see that the known
mathematical expectation of the integral concentration J

and the solution of the conjugate equation Cx allow
the emission rate Qg of the source of atmospheric
pollution to be determined. In solving particular
problems, all terms of a statistical ensemble of the
integral ~ concentration  and,  consequently, the
mathematical expectation are unknown. Therefore, in
determining the source emission rate Eq. (9) usually
includes the measured integral concentration J, in

place of 7, rather than the ensemble-averaged one,
namely,

Qy=J/Tx. (10)
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The value of J is random, and this leads to the
scatter in the estimated emission rate of the source.
Consider first the distribution law of the estimated
emission rate due to the statistical nature of the process
of pollutant diffusion and then take into account the
measurement error in concentration. As known,! the
integral pollutant concentration has the following
probability density function:
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where J and P are the parameters of the function (11);

+

cs; is the variance of J. According to Eq. (10), at the
known solution of the inverse problem, the probability
density function of the emission rate estimated by
Eq. (10) coincides with Eq. (11) accurate to
designations. It also follows from Eq. (10) that

0y=7/T. and % =03 /T:,

where Gé is the variance of the found value of
the emission rate. Thus, to specify the probability
density function Qq, it is necessary to know the
mathematical expectation of the integral pollutant

concentration 7, its variance cs;, and the solution of the

inverse problem Csx .

The measurement errors in the integral pollutant
concentration additionally contribute to the scatter of the
estimated emission rate. In this case, in place of the
instantaneous value of the integral concentration J, we
observe other random value. Denote it as ¢. The
estimation of the emission rate is similar to Eq. (10):

QOZQ/7*~ (12)

It follows from Eq. (12) that
- - —2
Q¢ =q/J. and 55 :of,/f* ,
where 6(2, is the variance of the estimated emission rate
taking into account instrumental errors.
Let f(g, J) be the joint probability density of the
measured parameter and the measured result. The

parameters J and ¢ are statistically dependent.
Therefore, f(g, J) can be written in the form6:

g, 1) = hqglD £, (13)

where #(g|J) is the conditional probability density
function of the measured value of the integral
concentration ¢ implying fixed measured J. Let us
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write the obvious equation for the probability density
function for the result measured

f,()= jhw\f)f,(nd/. (14)
0

According to Eq. (12), the probability density
function of the found value of the source emission rate
allowing for the statistical scatter in the integral
pollutant concentration and the measurement error
coincides with Eq. (14) accurate to designations. In the
further consideration, we believe that the conditional
probability density function /(g |J) is known. If the
measurement technique is free of systematic errors, then

6_727. To determine the variance of the measured
value, calculate the second moment

9> = [o? [ia\.Df; (DdIdg=[a?] 4 fDAT. - (15)
0 0 0

The conditional mathematical expectation of the
squared ¢ is!:

|y =sq+J%,
where SLZZ is the conditional variance of the measured

integral concentration.
Then 662, can be presented as

o2 = [s2(Df;(Dds+33. (16)
0

In particular, it follows from Eq. (16) that with no
measurement errors (sf, = 0) the variance of ¢ coincides

with the variance of the measured integral
concentration G$=63. For further analysis, let us
specify the following model of the conditional
probability density of the measured concentration:

1 (Ing - m)?
h(q| )= exp| — ;
q qp+27 { 2p? }
2 S% 1 2
p?=In|{1+—|, m=InJ-=p~°. A7)
J? 2

We can see that the conditional mathematical
expectation and the conditional variance of the measured
integral concentration g calculated by Eq. (17) are equal
to, respectively, J and sé. Consider two models of
conditional variance of the measured result. In the first

model it is assumed that s§=oc% J?. Such a model
describes the same contribution of measured values to
the conditional standard deviation of the integral

concentration normalized to J. In the second model
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sé = a% J J . In this case, the measurement technique is

assumed to be such that the contribution of measured
values to the standard deviation of the integral
concentration decreases in inverse proportion to the
measured concentration.

For practical calculations, we should specify the
variance of the integral pollutant concentration, which
is determined by the following equation:

NN )
2= J _[[c(t1 )C(ty)-C }dt, dty =
00

= [ [Be(tit) dtidty, (48
00

where Bc(tq, ty) is the correlation function of

concentration fluctuations. We can see that cs; can be
determined  from  double integration of  the
corresponding correlation function over time. Therefore,
it sufficiently weakly depends on the specific form of
Bc(ty, ty). Based on this fact and on the peculiarities
of the semi-empirical approach to description of
turbulent diffusion, we proposed! the following quasi-
stationary model of the correlation function:

Be(ty, fz):GZ(ﬁ)eXP(—@} 19

where 1t is the Eulerian time scale of concentration
fluctuations. Therefore,

o =2 [o2(0)dt. (20)
0

As an example, let us consider pollutant diffusion
from a source located in western suburbs of Novosibirsk
(Fig. 1) situated on the banks of River Ob and shown
by different grades of the gray scale (at the center of
Fig. 1). The river shown by black divides the city into
the right-bank and left-bank parts.

In computations we used meteorological conditions
typical of a summer (July) day at the western wind
with the speed of 3 m /s at the vane height. The source
with a given emission rate was operated at 12:00 L.T.
The wind velocity field over the city was determined
with the use of the numerical-analytical model.2 Then
the semi-empirical equation (1) and the equation for
the wvariance of the pollutant concentration were
solved.6 Light isolines in Fig. 1 give the idea of the
pollutant concentration field. Then the sensitivity

function of the pollution source J. was determined by

solving the conjugate equation (3). Points /-3 in
Fig. 1 served as measurement sites. The distribution
function of the source emission rates calculated at these
points neglecting measurement is shown in Fig. 2.
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Fig. 1. Map of the area for which the computations were carried out.
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Fig. 2. Distribution function of the emission rates calculated
at the points numbered in Fig. 1.

To determine the Eulerian time scale 1, we used
the estimate t = 45 2/5 proposed in Ref. 1; here z is

the height of the observation point, m; U is the mean
value of the horizontal component of wind velocity,
m,/s. We can see that the distributions of the emission
rates estimated at the selected points are different in
principle. At the first point lying on the lee side, there is
almost no scatter in the estimated emission rate. At the
second point, the errors in determination of the emission
rate become marked. As to the third point, it has no
prospects for determination of the source emission rate.
The probability to observe zero emission rate at this point
exceeds 60%. Similar pattern is also observed when
taking into account the measurement errors in
concentration.

As an example, Fig. 3 depicts the probability
density function for the emission rate estimated at the
first point after normalization to the maximum value.
Figure 3a corresponds to the model of conditional

variance of a measured result sf, = oc% J? for o =0.2.
Figure 3b corresponds to the conditional variance of a

measured result sf, = oc% JJ for oy =0.2.
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Fig. 3. Probability density function of the estimated source
emission rate.
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The Table presents standard deviations of the
estimated emission rate (18) normalized to the
mathematical expectation. We can see that the errors of
determination of the source emission rate significantly
depend on the peculiarities of the technique used for
measurement of the pollutant concentration.

Table
Point Model sg = a? J2 Model S?, = Otg JJ
1 0.21 0.02
2 0.34 0.06
3 0.75 0.16

Thus in this paper we have considered the
theoretical basis for accounting for measurement errors
of the pollutant concentration in determining the source
emission rate through solution of the inverse problem of
pollutant diffusion. Practical examples demonstrate the
importance of this factor in particular applied
problems.
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