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The results of theoretical analysis of deposition of aerosol particles on a surface are presented. A
gas-kinetic model of elementary particle—surface interaction processes allowing for different kinds of gas
inhomogeneities is proposed. Classification schemes for deposition modes based on introduction of three
Knudsen numbers are discussed. The problem of thermophoretic deposition normal to the surface is
formulated, and the results for free-molecular and viscous slip-flow deposition modes are presented. A
method is proposed to take into account the Brownian diffusion of submicron aerosol particles. The
connection of the gas-kinetic model developed with the dynamic particle—surface interaction models is

considered.

Introduction

The processes of aerosol particle deposition on and
detachment from surfaces play an important role in the
evolution of air-disperse systems. The wide variety of
deposition modes and conditions gives rise to numerous
theoretical models and approaches to solution of the
problem.!

Interaction of particles with a surface may be
physical-chemical or electrostatic (including the effect of
Van der Waals and Coulomb forces), as well as gas-
kinetic, similar to the hydrodynamic interaction.2
Unfortunately,  characteristics of the  gas-kinetic
interaction of particles with the surface are not that
thoroughly understood and studied as the characteristics
of hydrodynamic interaction. A gas cannot be usually
treated as continuum because of its rarefaction and
molecular effects. Moreover, deposition processes usually
proceed at widely varying gas pressure and temperature,
and this leads to the particle—surface interaction different
from that under continuum conditions.

Actual atmospheric or technological processes
involve a wide variety of gas-kinetic deposition modes:
from the continuum mode (coarse aerosol) to the mode
of ultra rarefied gas (fine aerosol); wvarious
inhomogeneities of the gas medium caused by pressure,
temperature and concentration gradients manifest
themselves; particles may be under the exposure to
external  fields:  gravitational, electrostatic, or
electromagnetic. The corresponding phoretic processes
in aerosols (thermo-, diffusion-, electro-, turbo-, and
photophoresis) are studied largely within the model of
aerosol particles in an unbounded gas volume. The
presence of deposition surfaces gives rise to a wide
variety of gas-kinetic effects and regularities that are
studied rather fragmentarily and non-systematically yet.
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In this study we have undertaken an attempt to apply
logically the gas-kinetic model of elementary processes
of the particle—surface interaction with allowance for
various inhomogeneities of the gas medium. The model
efficiency is demonstrated by the results on
thermophoretic deposition for some gas-kinetic models.
The model capabilities of accounting for other physical
factors (for example, Brownian diffusion of particles)
are briefly analyzed. It is shown that the model of gas-
kinetic interaction applied is necessarily connected with
the following dynamic models describing the adhesion
interaction, collision, and detachment of particles from
the surface.

Statement of the problem and
classification of deposition modes

Consider a spherical particle of radius R
suspended in gas at a distance @ from one of two
parallel planes spaced by L (Fig. 1). The lower plane is
assumed to be the deposition surface. The presence of the
upper surface is convenient for classification of deposition
modes and, in addition, it gives rise to a particular class
of problems (deposition of particles from a bounded gas
volume). The surfaces may have equal or different
temperatures, and this is important for the problem of
thermophoretic deposition. The particle may be affected
by different forces caused by both inhomogeneities of
the gas medium and inhomogeneity of the particle
surface temperature (resistance force; thermo-, diffusion-,
and photophoretic forces). The case of thermophoretic
deposition of particles most known in the literature is
considered below by default. The instantaneous
directions of vectors of forces and particle motion are
generally arbitrary with respect to the deposition surface.
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Let [ be the mean free path of gas molecules at a
fixed gas pressure p in the gap between the plates.
Then we can introduce three dimensionless similarity
parameters characterizing the degree of gas rarefaction:
Kng =1/R, Kny =1/L, and Kn, =1/a. These three
Knudsen numbers are not independent, because of the
obvious condition that R <« < L and the practical
restriction that R << L (particle size is usually much
smaller than the characteristic size of the deposition
area; the case R ~ L is principally possible, but it calls
for a separate consideration). Therefore, usually
Kngp > Kn, > Kn;, and Kng >Kn;. Thus, the
following classification scheme of deposition modes
(Fig. 2) can be considered.
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Fig. 2. Classification of thermophoretic deposition modes from unbounded (@) and bounded (b) gas volumes.
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1) Kn; — 0 (deposition from unbounded gas
volume, Fig. 2a). The upper plate has almost no effect
on the deposition process. If Kn, <<1 in this case, then
we have the mode of particle motion in an unbounded
gas volume, and Kng can have any arbitrary value. The
gas-kinetic particle—surface interaction is absent. For
this situation numerous theoretical results obtained by
use of different methods (see, for example, Refs. 3 and
4) are known. The case of Kn, > 0.1 (the particle is
separated from the lower plane by the distance of about
the mean free path of gas molecules) already implies
the interaction between the particle and the surface; in
this case Kng can be arbitrary as well. There are only
few theoretical results known for this case (for
example, Refs. 5-7 for Kng >>1, Refs. 813 for
Kng <<1; the intermediate mode is unstudied yet).
Finally, the case Kn, >>1 (the particle is located
nearby the surface) is possible, for which both
calculation of free-molecular gas-kinetic particle—
surface interaction and accounting for adhesion forces
between the particle and the surface are needed.

2) Kn; > 0.1 (deposition from a bounded volume,
Fig. 2b). Here Kngi >1 in the general case. A free-
molecular deposition mode (Knp >>1) usually occurs
for the particle at any separation a. Some theoretical
approaches and results are also known for this case, in
particular, the results from Ref. 14 and the data of
systematic analysis of free-molecular flows of a gas with
particles. 15719 It should be noted that in the literature
there are no results on estimating the competition of
gas-kinetic and adhesion interaction forces, which is
important in principle for this deposition mode.

Gas-kinetic particle—surface interaction

We know only one theoretical approach analyzing
the gas-kinetic interaction between a particle and a plane
surface.20 According to it, the problem consists in
determination how the linear and angular velocities of a
spherical particle are related to the forces and angular
momenta acting upon it near the surface. Let U and Q
be the translational and angular velocities of the
particle at some distance ¢ from the plane, and F and T
be the force and angular momentum acting on the
particle from the gas medium. They are connected by
the following equation:

(7)on(5 ¢Ja) o

where ng is the coefficient of gas viscosity. The square
matrix in Eq. (1) is referred to as the resistance
matrix.220 The inverse matrix

U N F

[ 820r) g

Q) ng bec)\T
is referred to as the mobility matrix. Using the methods
of thermodynamics of irreversible processes and
Onsager reciprocity relations, one can show that the

coefficients of these matrices are symmetric.2! Since no
particular solutions of the gas flow equation are
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invoked in this case, Eqs. (1)—(2) are valid at any gas-
kinetic flow modes and conditions of gas — particle
surface interaction.20 If the coefficients of both matrices
are represented in the form

A=XAKkk+YAGi+jj), a=xkk+y9Gi+jj,

B=YBGj-jb), b=y"Gj-jb), (€))

C=XCkk+YC{i+jj), c=xkk+y°(Gi+]jj),
where i, i, k are unit vectors along the positive

directions of the axes of the Cartesian coordinate
system with the origin at the center of the particle,?
then we obtain ten scalar functions, X4, Y4, YB, XC,
YC and x¢, y¢, yb, x¢, y¢, which should be calculated
by the gas-kinetic method for complete determination
of the resistance and mobility matrices.20

Thus, if we know the vectors of the angular and
translational velocity of a particle at some point near
the deposition surface, then the force and the angular
momentum can be determined by Eq. (1), provided that
the coefficients of the resistance matrix are known. On
the contrary, if we know the force and the angular
momentum, then the angular and translational
velocities can be determined by Eq. (2) at the given
coefficients of the mobility matrix. This formalism
likely exhausts all possible versions of the dynamic
behavior of the particle near the deposition surface with
the allowance for their gas-kinetic interaction.

The statement of the necessity of calculating two
determining parameters: either F and T or U and Q, is
of principal importance. Results available from literature
not always meet this requirement, and the problem of
determination of the angular momentum 7 or the angular
velocity Q is traditionally ignored. The classical example
of the need in taking these characteristics into account
is the Saffman problem,22 namely, appearance of the
lifting force acting on the particle in the shearing gas
flow near the surface. Besides, within this approach, it
is possible to consider particle deposition at an
arbitrary angle to the surface (such results are usually
obtained as a superposition of the normal and tangential
particle motion, see, e.g., Ref. 13).

The coefficients of the resistance and mobility
matrices can be determined only through solution of
particular elementary problems with the allowance
made for features noticed at classification of the
deposition modes (the formalism itself20 does not include
these peculiarities). Such elementary problems are, in our
opinion, the problems of gravitational deposition of
particles, deposition of particles in temperature,
concentration, and electromagnetic radiation fields
(thermo-, diffusion-, and photophoretic deposition). This
approach may probably be useful in solving the problem
on turbulent deposition of aerosols as well.! Some
results on the coefficients of the matrices are given in
Ref. 20 (the results of calculation of the resistance
force of the particle at its motion normal to the
deposition surface are mostly analyzed). Rather a
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detailed review of the results and methods for
description of hydrodynamic interaction between the
particle and the deposition surface can be found there
as well. In this paper we present some results of
solution ~ of the elementary  problem  about
thermophoretic deposition of the particle normally to
the deposition surface in the free-molecular and viscous
slip-flow deposition modes.

Thermophoretic particle deposition

Statement of the problem. Consider a problem
that a spherical particle with the thermal conductivity
A, deposits normally to the surface in a plane-parallel
gap with the width L and the wall temperature T > Ty
at a constant gas pressure p (see Fig. 1). This
formulation of the problem corresponds to the
deposition modes from the bounded and unbounded gas
volumes according to the above classification. Unless
otherwise specified, the angular momentum 7T does not
arise at the normal deposition, and the angular velocity
of the particle Q is equal to zero.

Since the velocity of the thermophoretic particle
motion Uyp is assumed low as compared with the
characteristic velocities of thermal motion Eg, the

quasi-stationary formulation of the problem is valid.23
It is obvious that the presence of surfaces makes the
particle motion non-stationary, because the particle
moves along one of the directions: the distance «a
between the particle and the plane is the function of
time a = a(¢), therefore the thermophoretic force is
Fr = Fr(a), the resistance force is Fp = Fp(a), other
possible forces and the particle velocity Ur = Up(a)
are also the functions of time ¢. However, if the
particle velocity Ug = |da/dt‘<< Vg, then for the

period of relaxation of the temperature field around the
particle tr= 1/5g it moves at a distance

~|da/dt‘ 5? <<, that is, it can be thought almost

fixed. Therefore, all the considered macro parameters
establishing for the time ¢y are believed dependent only
on the gap a, and the value of a is assumed given at
every time ¢.

In any deposition mode, we first solve the problem
of determination the temperature fields in the gas T,
and on the particle surface Ty and then find the
thermophoretic force Fr(a) and the resistance force
Fp(a) that are functions of the separation between the
particle and the deposition surface a. After that we
calculate the instantaneous velocity of thermophoretic
motion of the particle Ur(a).

Free-molecular deposition mode
1. Analysis of the case Kng >>1, Kn, <<1

If the particle is small, that is, Kng=1{/R>>1,
then it does not disturb the gas state, and for its
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description we can use volume Chapman— Enskog
velocity distribution functions for gas molecules.24
Consider the situation that a particle is rather far from
both  plates (Kn,<0.1). 1In this case, the
thermophoretic force should differ only slightly from
the corresponding value for the unbounded gas volume.
The temperature profile between the plates can be
determined through solution of the problem of heat
transfer between two parallel planes2>:

[Ty - T/ (T —Ty) =8,/2+

+(1-8)L-a-2)/L,

§=[1+4/(15Knp)] " (4)
Then

T(z) =Ty (1 +1),

where

w(z) =1 /Ty) (1 -3 Gz,
and the temperature

To=T(z=0)=T; -
-(T-T)M1-8/2-U-8a/Ll

For further solution, we should specify the
distribution functions of gas molecules falling on and
reflected from the particle surface. The first of them
can be constructed using the first approximation of the
Chapman — Enskog theory,24 and it keeps unchanged
until collision with the particle surface. For the
distribution function of reflected molecules, we can use
the specular-diffusion scheme of the boundary
conditions.?> Estimating the particle temperature as
T(0g) = Ty [1 + 1,(09)] (8 is the polar angle taken on
the particle surface), in the process of solution of the
thermal problem we obtain

1(00) = [15G1/(8Ty) — n'/? u,, /4] x
x & cos 09 {ky To/ [Rp(2kTy/ (um)' ] + 6}, (5)

where u, = U, [1n/(2kT0)]1/2 is the dimensionless
velocity of the gas center of gravity with respect to a
fixed particle; m is the molecular mass; k is the
Boltzmann constant; € is the coefficient of diffuse
reflection of molecules from the particle surface.

The total force acting on the particle from the gas
can be calculated through surface integration of the
total momentum flux brought by falling and reflected
molecules:

F=Fp+Fp= [(P~+P*)ds=
S

T
—27R2 J'(P—+P+)sineodeo,
0

P¥=m |o,0,f*(r=R)dv . (6)
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The resistance force has the form
Fpla) = — (16,/3) 72 pR2 [m/ QKT )] % x
x{1 - -Ty/TD-8/2-U1-8) a/Lly "%«
x[1+(n/8) €] U,. @)

In the case of small temperature differences (T —
- Ty) /Ty <<1 we have

Fpla) = F) [1+ (1/2) T(a)],
IMa)=U-Ty/T)[1-86/2-U1-8)a/L], (8)

where Fg is the free-molecular resistance force in the
unbounded gas volume.4
The thermophoretic force has the form

Fr(a) =—4pR*Gl/Ty {1 — (1 =T /T [1 —8/2 -
-(1-8a/Ll" (9

For small temperature differences we have
Fra) = FY [1 + T(a)], (10)

where F% is the thermophoretic force in the unbounded
gas volume.3 The rate of the thermophoretic particle
deposition can be presented as

Up=—Gn V2 /4) 12kT,/m]"? (GL/T/) x
x[1+(@/8)el{l—U-Ty/Ty) x
x[1-8/2-(1-8) a/Lly "2 (11)

For small temperature differences this equation
can be reduced to the following form:

Ur=-[5+@/8) el ' Oy G/p) [1+ ()], (12)

where Ag is the gas thermal conductivity.

In the limit Kn; — 0 the equations obtained
transform into the well known equations for the model
of a particle in an unbounded gas volume.3:4

2. Analysis of the case with Kng >>1, Kny — 0

Consider the situation that at Knp >>1 the
particle is in the immediate proximity to the lower
surface with the temperature T,, so that the gas
molecules move from the plate to the particle without
collisions (Kn, > 1 or even Kn, >>1). The upper plate
is very far from the particle or absent, therefore
Kn; —» 0. The distribution function of the gas
molecules fallen on the particle and the surface from
above is again taken in the form of the first
approximation of the Chapman— Enskog theory.24 The
distribution function of molecules falling on the
particle from the plate is chosen in the form of the
Maxwell function with the allowance for the
temperature difference.25 After solving the thermal
problem, we can determine the thermophoretic force

Fr=(/4) R*p(Ga/T)) (1 -8 [1 -T(@)]". (13)

S.A. Beresnev et al.

The rate of thermophoretic deposition Ugr can be
determined similarly to the previous case.

3. Analysis of the case with Kng >>1, Kng >1

Let us try to generalize the result of Ref. 14 for
the case of a collisionless ultra-rarefied gas between the
plates (see Fig. 2b). Since the particle is small and it
does not disturb the gas state, we can again make use
of the solution of the problem on heat transfer between
the plates?> to find the temperature distribution and
the number density. At completely diffuse reflection of
gas molecules from the plates, these are as follows:

ng=(ny +ny) /2, To=(T;T)"?
nyo = 27’10 T;ﬁz/(T}/Q + T%/Z).

The distribution functions f; and f, of molecules
reflected from the surfaces are taken to be the Maxwell
ones. Since there are no molecular collisions between
the plates, the total distribution function of gas
molecules falling on the particle surface is

=11 Hi(v,) + [, Hy(2v,),

H1(Uz):{

0, v,>0 1, v,

>0
, Hz(vz):{ . (14)

1, v, <0 0, v, <0

Calculation of the thermophoretic force according to
Eq. (6) gives

Fr=-aR>p (T)* =T /(T}"*+ TYH. (15)

At small temperature differences, the equation obtained
can be linearized as follows!4:

Fr=-(/OR*p (1 - Ty/T). (16)

Equations (15) and (16) can easily be generalized for
the case of arbitrary accommodation of the energy of
gas molecules on the plate surfaces. It can be shown
that the value of energy accommodation on the particle
surface does not affect the thermophoretic force in the
absence of molecular collisions. Let ag; and agy be the
coefficients of energy accommodation on the plates 1
and 2, respectively. Then, according to Ref. 25, gas
molecules are reflected from the plates with the
temperatures T,q and T,y, rather than T{ and T, with
allowance for possible arbitrary energy accommodation.
In this case for the thermophoretic force we have

Fr=-nR?p {\/OLEZ(1_OLE1 )Ty +oup Ty —

—Jap(=ap)Ti+opT }/{JOCEZG—OCB )Ty +oup Ty +

+JOLE1(1—CXE2)T1+OLE2T2}. (17)

At small temperature difference between the plates, we
obtain the generalized result from Ref. 14:

Fr=—(n/®lag agy/(ogr + apy = app ap)] x

x R p(1 = Ty /T). (18)
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Viscous slip-flow deposition mode

Analysis of the case with Knp <<1, Knz — 0.
Consider the situation that a spherical particle of radius
R is at the distance a from the plane surface with the
constant temperature Ty. The temperature gradient G
along the OZ axis far from the particle and the
deposition surface is constant. To solve problems of
such a kind, it is convenient to use bipolar coordinates
(€, m, 0) described in detail in Ref. 10. The thermal
problem on determining the temperature fields of the
gas Ty and the particle T, is reduced to solution of
Laplace equations in this coordinate system with the
boundary conditions of equal temperatures of the gas,
particle, and deposition surface (neglecting temperature
differences) and continuous heat fluxes. To find the gas
flow fields, let us use the method of flow functions.?
The boundary conditions on the particle surface
accounts for possible thermal gas slip flow. From
analysis of the external (gas) and internal (particle)
thermal problem, it follows26 that the analytical
solution is possible only for rather a large gap a (the
particle is not too close to the deposition surface).
Using this approximation, we obtain an analytical
solution of the boundary-value problem for the flow
functions and then calculate the total force
F =Fp+ Fy acting on the particle. As a result,
we have

Fp=-8m RUsinha Y 20D
D =TSR a;(2n+3)(2n—1)x

(19)

y (2n+1)sinh2a+2sinh2n+1) a 1
4sinh?[2n+ 1) a/2]-(2n+1)%sinh?a |

Fr :—16nngGGRsinh2 (xZn(n+1)sinh[(2n+1) a,/2]x
e (20)
y 2sinhaexp[-Cn+1a/2]+(1-1/A) o,
4sinh? [(271+1)0L/2]—(211+1)2 sinh2a’

where the angle o in the bipolar coordinate system is
determined from the condition cosh a =a/R,
6 =ng K¢/ (pg Tg), Ki is the coefficient of thermal
slip flow of the gas,24 all other designations are
standard. 10 Determination of the rate of thermophoretic
deposition Uz from the condition F =0 completes
solution of the problem.

Account for Brownian diffusion at
thermophoretic deposition of particles

In calculations of thermophoretic forces for
different deposition modes, the effect of the Brownian
motion (both translational and rotational) of particles
was neglected. The answer to the question about the
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effect of the Brownian motion was given in Refs. 23
and 27: for not extremely small particles the
characteristic time of rotation of the sphere through
some marked angle is much longer than the
characteristic time of temperature distribution on the
particle surface. However, correct allowance for the
translational Brownian motion of particles is needed,
because it considerably modifies the process of
deposition of submicron aerosols.2’” In Ref. 28 an
attempt was undertaken to introduce the generalized
coefficient of Brownian diffusion for problems of
aerosol deposition onto a surface. It accounts for the
presence of the deposition surface and allows the
significance of the Brownian motion to be evaluated for
different deposition modes depending on the set of
determining parameters. Thus, the model of gas-kinetic
interaction should include the mechanism of Brownian
diffusion as well.

Dynamic models of particle—surface
interactions

The final result of the model of gas-kinetic
interaction under development is instantaneous values
of the vectors of forces and velocities depending on the
distance to the deposition surface. This information is
necessary and sufficient for realization of different
versions of dynamic models accounting for adhesion
interaction, collisions, and attachment and detachment
of particles from the deposition surface. Among models
of this type, the results of Refs. 29-32 are worth
noting. Thus, it becomes clear what are the role and
the place of the model of gas-kinetic interaction in
complex and multi-stage deposition processes: it gives
the primary information about the forces, angular
momenta, and velocities of particles caused by various
inhomogeneities of the gas medium and features of
the deposition mode. It is undoubted that further
dynamic behavior of the particle near the surfaces is
determined, to a great extent, by their “gas-kinetic”
pre-history.

Conclusion

This paper (along with Ref. 28) is only the first
stage in the program of extensive studies of the gas-
kinetic interaction between a particle and a
deposition surface. The limited paper does not allow us
to present detailed analysis of the results obtained
within the theory of thermophoretic deposition of
particles and the complicated mathematical apparatus.
In the following papers, it is planned to present the
results given by the gas-kinetic model for diffusion- and
photophoretic deposition of particles. The main
difficulties in calculations arise in analysis of
the deposition mode at Kngr~1 and Knj =1
(the results of such a kind are now absent in the
literature).
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