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Influence of atmospheric scintillations on image centroid
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The effect of atmospheric scintillations on an image centroid is investigated by means of computer
simulations. The simulations were performed for the case of weak turbulence for both varying and
constant C2 (vertical and horizontal radiation propagation). It is shown that, under weak-turbulence
conditions, the magnitude of the effect does not exceed 15%. However, because it grows up with the
increasing turbulence, a quite strong effect of scintillations on the image centroid under the strong-
turbulence conditions can be expected. A comparison of the results for vertical and horizontal
propagation shows that there is no strong dependence of the effect magnitude on the structure of the C2
profile. Probably, it is mainly determined by two parameters: integral turbulence (Fried parameter) and

scintillation level (log-amplitude variance).

Introduction

Measurements of an image centroid are often used
in Hartmann-type wavefront sensors to reconstruct the
phase distorted by atmospheric turbulence.!=7 This
approach is used both in basic research of atmospheric
turbulence and for practical needs (as, for example, in
adaptive optics of the atmosphere), as well as in
various applications, because it gives a direct and
simple relation between measurements and the phase
gradient. In this approach, it is assumed that the phase
gradient averaged over the subaperture of the
Hartmann mask is proportional to the corresponding
shift of the image centroid. However, this simple
relation is valid only when the effect of amplitude
scintillations is ignored. According to the commonly
accepted idea,8 under the conditions of weak turbulence
the effect of amplitude scintillations on the image
centroid is negligibly small, but this idea has been
never checked by computations.

In this paper, we calculate the magnitude of the
effect under study by means of the recently proposed
method of random wave vectors,? 10 which allows the
simulation of amplitude and phase realizations with
desired and mutual statistics.

1. Determination of the error caused by
scintillations

Let the wave y(p) pass through a thin lens with
the diameter d and the focal length f. The centroid p.
of the image formed by this wave in the focal plane of
the lens can be represented as
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where x. and y. are the Cartesian coordinates of the
image centroid; y(p) and S(p) are, respectively, the
log-amplitude and phase of the wave y; k is the
wavenumber; G, means an integration over the lens
aperture.

However, in  experiments connected with
reconstruction of the phase from the image centroid
measurements (for example, using Hartmann-type
wavefront  sensors), the effect of amplitude
scintillations on the image centroid is always assumed
negligibly small. Mathematically, this assumption can
be written as

i
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where X is the lens area.

Since p. and p; are random in the problems
connected with radiation propagation through the
turbulent atmosphere, the relative error o of image
centroid measurements due to amplitude scintillations
can be represented as:
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2T Vo o N @

From the physical point of view, o shows how
large is the relative contribution of scintillations to the
shift of the image centroid. In this paper, this value is
calculated by means of numerical simulation depending
on turbulence conditions and the lens size.

2. Method of numerical simulation

In this paper, we restrict our consideration to
propagation of the initially plane wave through the
weakly turbulent atmosphere. In this case, we can use
the method of random wave vectors (RWV), which
allows a simulation of phase and log-amplitude
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realizations with desired and mutual statistics. Below
we give only brief description of the RWV method,
because it was considered in detail in Ref. 9.

Realizations of the phase S(p) and log-amplitude
1(p) on the aperture are simulated as follows:

M
S(p) = 2 F(py) cos(py, - p + )5
m=1
(4)
M
x(p) = 2 G(py) cos(py, - p+ 0py + W),

m=1

where p is the two-dimensional radius vector in the
aperture plane; M is the number of harmonics used for
simulation; p,, is the two-dimensional random wave
vector; p,, is the magnitude of the vector p,,.

The following statistical restrictions are imposed
on the parameters in Eqs. (4):

1) The magnitude p,, and direction 0,, of the
vector p,,, as well as the parameters ¢, and v, are
supposed statistically independent.

2) The values of 0,, and ¢, are distributed
uniformly in the interval [-=, «].

If these conditions are fulfilled, Eqs. (4) allow a
direct physical interpretation. Statistical independence
on ¢,, and the uniform distribution of this parameter in
the interval [-m, =] reduce the problem to consideration
of only homogeneous processes. Then isotropic processes
are selected from the class of homogenous processes by
imposing a random uniform distribution on the interval
[-n, n] for the orientation 6,, of the vector p,. Thus,
with these two restrictions, the parameters S and y are
simulated by isotropic random functions in accordance
with the existing theory of atmospheric turbulence.

Then let us select the joint probability density
function of the parameters p,,, F(p,), G(p,), @, and

W, in such a way that the model spectra W{gnOd, W;n‘)d,

and Wg, 4 coincide with the corresponding theoretical
spectra Wg, W, and Wi,.

Under the above conditions, the parameters of
Egs. (4) can be expressed through theoretical spectra as
follows (for detailed derivation see Ref. 9).

The amplitudes F and G:
[ Ws(p) | W,(p)
F(p) = MO ¢ G(R) = MO - )

The probability density function (PDF)
Q(p) =1/ [2np? log(K, /K], (6)
where [Ky, K5] is the interval, in which the values of p

are generated.
The joint PDF n(y, p) of the parameters y and p is
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Under the conditions of weak turbulence, the
theoretical spectra can be obtained from solution of the
Rytov parabolic equation as!!

Ws(p) = 0.651 @,(p) f dz CX(2) [1 + cos (i p2>],
W,(p) = 0.651 @,(p) f dz C,%(z) [1 — cos (% p2>]

W, (p) = 0.651 ®,(p) [ dz C2(2) sin (% ,,z), )

where @, is the spectrum of the refractive index; C2(2)
is the profile of the refractive index structure
parameter, and the integrals are taken over the
radiation propagation path.

The step-by-step description of the simulation
procedure can be found in Ref. 9.

3. Results of simulation

Using Egs. (1)—(3) and simulation by the RWV
method, we can estimate the relative error ¢ given by
Eq. (3). The simulation was carried out for the case of
Kolmogorov turbulence ®,(p) = p~11/3. The following
parameters were taken as the main parameters of
simulation: limit frequencies K{ =103 m™! and
K,=103m™!, as well as the number of harmonics
M = 100. The limit frequencies were taken after a series
of preliminary numerical experiments, which showed
that further decrease of Ky and increase of K, almost
do not change final results. The number of harmonics
was chosen in a similar way. The number of realizations
used for statistical averaging in Eq. (3) was taken
equal to 1000. The simulation was carried out for two
cases of radiation propagation that are of interest from

the practical point of view: varying C,2Z (vertical

propagation) and constant C2 (horizontal propagation).
For the calculation with varying C,Z,, we used the

Hufnagel model!2 for C,Z,(z) in the following form:

C2(2) = Cy 1y x

10
[ (F) e (F)re(F)]

where 7 is the Fried parameter; k is the wavenumber;
Cop=1.027 - 103 m™3, z5=4.632-103m, z; =103 m,
and zo = 1.5 - 103 m.

The equations for the spectra Wg, W,, and Wy,
corresponding to the considered model can be found in
Ref. 9. The results of simulation are shown in Fig. 1a
as a dependence of the relative error on the ratio of the
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lens diameter d to the Fried parameter 7, for some
values of the wavelength A, the Fried parameter r(, and
the standard log-amplitude deviation o,.
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Fig. 1. Relative error ¢ as a function of the ratio of the lens
diameter d to the Fried parameter ry: vertical radiation

propagation (Hufnagel model of the C,21 profile) (a) and
horizontal radiation propagation (b); rp = 0.1 m, o, = 0.3 (1);
70=015m, o,=021 (2); r=02m, o,=016 (3);
A = 0.55 pm.

In the case of horizontal radiation propagation,
C2(2) is constant, that is, C2(z) = C2. The theoretical
spectra can be expressed as follows:

— . k. p2L
Ws(p) =1.54476> 7 p “/3[1 oL s (T)]
W, -5/ . k 2L
(p) =1.544 >3 p‘“/3[1 - I)2_L sin (PT)] 11)

izl 1o (7))

W, (p) =1.544ry> 3 p11/ 2

where L is the
ro = 1.68(k2 C2 L)=3/5.
The results of simulation for the horizontal
radiation propagation are shown in Fig. 1b. As in the
previous case, the relative error is shown as a function

radiation path length and
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of the ratio of the lens diameter to the Fried parameter.
For comparison, the path length is taken so that the
value of o, is the same as in the previous case.

As can be seen from Fig. 1, the error first
increases up to some maximum and then gradually
approaches a certain asymptotic value. This behavior
can be explained in the following way. As can be seen
from Egs. (1)—(3), this problem involves three
different scales: the correlation length of the amplitude,
the mutual correlation length of the phase gradient and
amplitude, and the correlation length of the phase
gradient.

In the initial part, when the aperture size is small
as compared to the correlation length of amplitude
scintillations, the main contribution to the error is due
to the linear components of the amplitude and phase
gradient, which provide for the almost linear increase
of the error. Then, as the aperture size increases and
becomes larger than the correlation length of the
amplitude, but still remains small as compared to the
mutual correlation length of the phase gradient and
amplitude, the nonlinear terms begin to contribute
considerably to the error. In this part, the error
increases more slowly and in the nonlinear way, when
the aperture size becomes comparable with the mutual
correlation length of the amplitude and phase gradient.
Finally, when the aperture size becomes larger than the
mutual correlation length of the amplitude and phase
gradient, the main contribution to the error is
introduced by such aperture zones, which have the size
comparable with the mutual correlation length of the
amplitude and phase gradient. In this part, we can see
that the error slowly approaches the asymptotic value.

From comparison of Figs. 1 and b, we can
conclude that the magnitudes of the studied effect only
slightly differ in the two sensing schemes under
consideration. This means that the effect depends

insignificantly on the detailed structure of the C%l
profile, and it is determined most likely by the two
integral parameters of the Ci profile: the integral
turbulence (Fried parameter) and the scintillation level
(log-amplitude variance).

Conclusion

The effect of amplitude scintillations on image
centroid measurements has been assessed. The results
obtained show that the magnitude of this effect does
not exceed 15% under the conditions of weak
turbulence. However, this effect grows up with the
increase of  turbulence. Therefore, amplitude
scintillations can be expected to have a quite strong
effect on the image centroid under the conditions of
strong turbulence, and, starting from some turbulence
level, the reconstruction of the phase from centroid
measurements can become impossible.

The magnitude of the studied effect was assessed

for two schemes of radiation propagation: constant CE,
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(horizontal propagation) and Cf, varying along the path
(vertical propagation). Comparison of the results shows
that the difference between these two schemes is small.
This means that the effect depends largely on the

integral parameters of the Ci profile: Fried parameter
and log-amplitude variance, rather than on the detailed
structure of the profile.
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