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An algorithm for spatiotemporal prediction of weather parameters based on Kalman filtering
using a second-order polynomial model with the varying polynomial coefficients is considered. The
experimental tests of the algorithm developed as applied to spatial prediction of mesoscale fields of
temperature and zonal and meridional wind components are discussed.

Introduction

Methods based on the Kalman filtering theory are
extensively used in recent time for spatiotemporal
prediction of meteorological fields.!™ These methods fall
in the category of dynamic-statistical methods and
require a model of dynamic systems to be specified. The
system of first-order differential stochastic equations
determines  the  spatiotemporal  variability  of
meteorological parameters on a given mesoscale. This
system accounts for statistical characteristics of both
the measurement errors and random processes entering
into the model of the space of states. Algorithms
developed based on the Kalman filtering can be easily
implemented on modern microcomputers and do not
impose strong requirements on the memory and
processor speed. This is first explained by the fact that
the algorithms have the recursion form and allow in
current time a stepwise correction of the estimated
model parameters to be done wusing discrete
measurement data.

The synthesized Kalman filtering algorithms are
traditionally divided into linear and nonlinear.4” In
this paper, we propose a linear algorithm for prediction
of weather parameters at a point inaccessible for direct
measurements.

The spatial variability of the weather parameters
is determined by the regression model of the space of
states. The polynomial coefficients enter into the state
vector of the dynamic system and are random processes
with preset statistical characteristics. In contrast to
classical polynomial models,5 which use the assumption
on constant approximating coefficients all over the
measurement range, the polynomial coefficients in the
proposed algorithm may vary in time. Thus, the
approach considered in this paper is a further
development of the classical regression algorithm for
prediction of weather parameters by accounting for the
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time variability of the polynomial coefficients. This
paper continues investigations presented in Ref. 1 on
the development of new methods and algorithms for
spatiotemporal prediction of atmospheric parameters.

1. Statement of the problem

To solve the problem of spatiotemporal prediction
of weather parameters at a point inaccessible for direct
measurements, we use a mesoscale testing ground with s
aerological stations that provide measurements of
weather parameters in a given atmospheric layer. All
measurements at a fixed time are presented in the form
of a profile (vector), each component of which
corresponds to a certain height. Therefore, it becomes
possible to use the splitting method, in which the
whole altitude range is divided into a certain number of
independent Kalman filters. Every Kalman filter uses
only those measurements of weather parameters that
correspond to the given altitude level. The set of
predicted estimates of weather parameters for every
altitude level provides the estimate of the whole
altitude profile inaccessible for direct observations.

The following reasoning is presented for the given
altitude level and a fixed weather parameter.

2. Polynomial algorithm for spatial
prediction based on Kalman filter

The algorithm for dynamic-stochastic spatial
prediction proposed in this paper is based on the
Kalman filtering technique proposed in Ref. 1. To
synthesize the algorithm for prediction of weather
parameters in terms of Kalman filtering, it is necessary
to specify the vector in the space of states of the dynamic
system and the model of measurements.
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One of the possible variants to construct the
algorithm for prediction of weather parameters can be
specified based on the Kalman filter estimating the
values of the second-order polynomial. The value of the
weather parameter £;(¢) at the ith point at the time ¢ is
determined by the following equation:

&) = ag(t) + ay(t) x; + ar(t) y; + az(t) xjy; +
+ 614(t) xiz + ds(f) yi2, (1)

where x; and y; are the Cartesian coordinates of a
measuring or forecasting station.

Thus, the coefficients ay(t), a;(t), ay(t), a3(®),
as(t), and a5(¢) determine the value of the weather
parameter at every time and any point within the
mesoscale. Therefore, it seems to be possible to specify
the column vector of states of the dynamic system in
the following way:

X(8) = lap(t), a1(t), ax(t), az(t), as(t), as(O|T, (2)

where T denotes transposition.

The space of the states of the dynamic system
described by the vector (2) is continuous, but in
practice it is convenient to pass from the continuous
time to the discrete one with an arbitrary estimation
step (for example, equal to the input period of weather
parameter measurements).

In this case, at the corresponding change of
variables, the state vector (2) acquires the following
form:

X(k): |X1(k), Xz(k), X3(k), X4(k), Xs(k), Xs(k)lT.(3)

The variation dynamics of the state vector
components can be described by the system of
difference equations:

X1 (k+1):X1 (k)+(01(k)y
Xz(k+1)=X2(k)+0)2(k), (4)

Xﬁ(k+1):X6(k)+(D()'(k)y
where o1(k), 0y(k), o3(k), w4(k), o5(k), and og(k)
are random perturbations of the system (generating
noise, or state noise).

The system of equations (4) in the vector form is
as follows:

X(k+1) = X(k) + Q(k), ()

where Q(k) is the generating noise vector.

Consider then the model of measurement channels.
Variations of the weather parameters SN’Z- at the ith point
and the kth instant in time is an additive mixture of its
true value and the measurement error g;(k):

Y; =£,(k) + g;(k). (6)

The model of measurements can be expressed
through the state variables. For this purpose, introduce
the transient measurement matrix H and write, in the
vector form, the relation between the measurement
vector Y and the state vector X(k) as:
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Y = H(k, x, y) X(R)+E(k). @)

The dimension of vectors Y and E(k) is
determined by the number of the measurement
stations s.

The (6xs) transient measurement matrix H is
determined as:

txy y xy xf y?
2 09
H(kH, x, y) = Lxy gy X2yy 43 Y3 . (8)

2 .2
1 Xs Ys XsYsi X5 X

The model of the dynamic system and the model
of measurements are linear, therefore the estimation
problem can be solved based on the Kalman—Bucy
linear filter that provides estimation of the state vector
with the minimum variance.

The traditional algorithm of the Kalman filter uses
the following a@ priori information:

M[X(0)] = X, is the mathematical expectation of
the vector of estimated parameters at the initial time;

MI(X(0) - Xp) (X(0) - X)T] =Py is the
covariance matrix of the initial estimate of the state
vector;

M[Q(k) QT(i)] = R, 8; is the covariance matrix
of the estimated process;

M[E(k) ET(i)] = Rg &p; is the covariance matrix
of measurement errors;

M[Q(k) E(kR)T] = 0 because the random processes
Q(k) and E(k) do not correlate;

M[X, QT(k)]=M[XyE(@)T]=0 because the initial
state Xy does not correlate with the perturbations
Q(k) and E(k).

The algorithm for prediction of the weather
parameters has the following form:

X(k+1) =X(k + 1k) + G(k + 1)[Y(k + 1) —
~H(k + 1, x, y)-X(k + 1]k)], 9)

where X(k + 1) = \5(1, )A(z, e 5(6|T is the estimate of
the state vector at the time (k + 1); X(k+ 1|k) = X(k)
is the vector of predicted estimates at the time (k + 1)
calculated from the data at the step k; G(k + 1) is the
(6xs) matrix of weighting coefficients.

In the classical Kalman—Bucy linear filter,
calculation of the weighting coefficients is a recurrence
procedure independent of Eq. (9) and connected with
solution of matrix equations for covariance of
estimation errorsS:

G(k+ 1) =P(k+1|R) HT(k + 1, x, y) x
x[H(k+1,x,y) P(k+ 1| R)HT(k+1,x,y) +Rg(k + 1)]!;
(10)
P(k+1|k) = P(k| k) Ro(k), 1)

P(k+1|k+1) = [I - G(k) H(k, x, y)] P(k + 1|k),
(12)
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where P(k+1|k) is the a posteriori (6x6) covariance
matrix of prediction errors; P(k+1|k+1) is the a priori
(6x6) covariance matrix of prediction errors; Rg(k + 1)
is the diagonal (sxs) covariance matrix of observation
noise; Ro(k) is the diagonal (6x6) covariance matrix of
state noise; I is the (6x6) unit matrix.

Final calculation of the predicted value of the

weather parameter £;(k + 1) at the ith point at the
k + 1 instant is performed by the equation:

Ek+ 1) = X (k1| R) + Xo(k+1 | R)x; + X3(k+1| R)y; +

+ Xkt | Rxgy; + X5t | )xs + Xkt | Ry . (13)

For the filtering algorithm (9)-(12) to begin
operating at the time k=0 (the initiation time), it is
necessary to specify the initial conditions: the initial

estimation vector X(O), the initial covariance matrix of
estimation errors P(0), as well as the elements of the
covariance noise matrices Rg(0) and Rq(0). In practice,

X(0) and P(0) can be specified based on the minimum
information about the actual properties of the system,
and in the case of complete absence of the useful

information it is set that X(0) = 0 and P(0) = L.

3. Results of investigating the quality of
Kalman filtering algorithm based on the
polynomial model

The above Kalman filtering algorithm based,
unlike that in Ref. 1, on a polynomial model with
varying polynomial parameters was studied to reveal its
quality and efficiency when applied to the problem of
spatial prediction (extrapolation) of the mesoscale
temperature and wind fields.

Since the spatial extrapolation in this paper is
considered as applied to prediction of a pollution cloud
of industrial origin, we took the mean values of
temperature and wind in some altitude interval % — A,
rather than the measured values of these parameters at
some levels (here hy =0 coincides with the ground
level, and /iy, is the altitude of the top boundary of the
studied kth atmospheric layer). In this case, the layer-
mean values of temperature and the zonal and
meridional wind velocity components were calculated
by the equation

kR
En g+ Em \( By — Iy
<E>py—ny = E K 5 I P 1]} (14)

i=1 k

where <-> means averaging of the observation data in
some atmospheric layer, and & is the measured value of
a weather parameter at different atmospheric layers.

To estimate the quality of the Kalman filtering
algorithm, we used the data of two-month observations
(at 0 and 12h GMT) at five aerological stations:
Warsaw  (52°10'N, 20°58'E), Kaunas (54°53'N,
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23°50'E), Brest (52°07'N, 23°41'E), Minsk (53°56'N,
27°38'E), and Lvov (49°49'N, 23°57'E) that form a
typical mesometeorological testing ground. All the
temperature and wind observation data presented on
standard isobaric surfaces and singular point levels
were reduced, using the linear interpolation, to a single
system of geometric heights taken as 0 (ground level),
0.2, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 4.0, 5.0, 6.0, and
8.0 km. This system of geographic heights allows us to
describe almost the whole troposphere with high
vertical resolution.

As the initial conditions, we took X(0) =0 and
P(0) =1, while the diagonal elements of the noise
correlation matrices of observation Rg(0) and the state
Ro(0) were taken based on the errors of radiosonde
measurements given in Ref. 7.

To estimate the accuracy of the Kalman filtering
algorithm, as control points we used the Warsaw and
Kaunas stations spaced by 185 and 250 km from the
closest stations Brest and Minsk that have available
measurement data. An important circumstance in this
case is that the Warsaw station (under conditions of
zonally mean west-to-east transport) is located at the
territory to the west of the region, for which we have
observations, that is, we consider the case, when the
problem of spatial prediction cannot be solved based on
the hydrodynamic approach.

As to the evaluation of the quality of the proposed
algorithm in the procedure of spatial prediction, it is
performed using the root-mean-square error of this
prediction

" 1/2
5 =[%Z(g$ _ii)2‘| (15)
i=1

(here &; and &; are the measured and extrapolated
values of a weather parameter; n is the number of
realizations), as well as the relative deviation
0 = 8: /o, where o is the root-mean-square deviation
of this weather parameter.

As an example, Tables 1 and 2 present the root-
mean-square (rms) § and relative 0 errors of spatial
extrapolation of the layer-mean values of temperature
and zonal and meridional wind velocity components up
to the distances of 185 and 250 km using Kalman
filtering algorithm. For a comparison, they also present
the rms and relative errors obtained for the case, when
spatial prediction was performed using the optimal
extrapolation method based on the use of analytical
functions of the forms:

for temperature

ur(p) = {exp(-ap)}cos(Bp), (16)

where oo =0.436 and B = 0.863;
for wind velocity components

pi(p) = py(p) = (1—ap)exp(—p)2, 17)

where a=1.162. In Egs. (16) and (17) p is the
distance in thousand km.
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Table 1. RMS (8) and relative (0) errors of prediction of the layer-mean values
of temperature and zonal and meridional components of the wind velocity

up to the distance of 185 km using the Kalman filtering algorithm with the polynomial

model (1) and the method of optimal extrapolation (2)

V.S. Komarov et al.

Layer Summer
Km ’ 3 0, % 3 0, %
1t | 2 1t | 2 1t | 2 1t | 2
Temperature,® C
0-0.2 1.9 2.1 49 54 1.9 1.9 44 44
0-0.4 1.8 2.2 47 58 1.9 241 49 54
0-0.8 1.8 2.3 49 39 1.8 2.1 50 58
0-1.2 1.8 2.3 51 66 1.7 2.1 49 60
0-2.0 1.7 2.3 45 61 1.4 21 41 62
0-4.0 1.6 2.9 37 67 1.1 2.7 33 82
0-6.0 1.7 3.3 39 77 1.1 3.0 31 86
0-8.0 1.7 3.5 40 83 1.1 3.2 30 89
Zonal component of the wind velocity, m /s
0-0.2 21 3.2 S4 82 21 2.8 64 85
0-0.4 2.8 3.3 64 75 2.3 2.8 67 80
0-0.8 3.2 3.3 39 61 2.5 2.7 66 71
0-1.2 3.2 3.3 52 54 2.5 2.7 62 64
0-2.0 3.0 3.1 45 46 2.5 2.7 38 60
0-4.0 3.0 3.2 42 50 2.3 2.6 47 53
0-6.0 3.5 3.6 40 46 2.4 2.6 45 49
0-8.0 3.8 3.9 38 41 2.6 2.6 46 46
Meridional component of the wind velocity, m /s

0-0.2 2.3 2.7 66 79 21 3.0 66 94
0-0.4 2.7 3.0 66 75 2.3 3.1 66 89
0-0.8 3.1 3.2 66 68 2.1 3.1 57 84
0-1.2 3.2 3.3 64 66 1.9 3.1 49 79
0-2.0 3.1 3.3 60 63 1.7 3.0 40 71
0-4.0 3.0 3.5 47 35 2.1 2.9 49 67
0-6.0 3.6 3.6 46 46 2.4 3.0 50 62
0-8.0 3.9 3.9 41 41 2.8 3.2 52 59

Table 2. RMS (3) and relative (0) errors of prediction of the layer-mean values

of temperature and zonal and meridional components of the wind

velocity up to the distance of 250 km using the Kalman filtering algorithm
with the polynomial model (1) and the method of optimal extrapolation (2)

Layer Summer
km ’ ) 0 ) 0
1 | 2 1 | 2 1 | 2 1 | 2
Temperature,® C
0-0.2 1.9 2.1 46 51 2.4 2.5 58 61
0-0.4 2.0 2.2 51 56 2.4 2.5 63 66
0-0.8 2.1 2.3 55 60 2.3 2.4 65 69
0-1.2 2.1 2.4 55 63 2.2 2.4 66 80
0-2.0 1.9 2.7 46 66 2.0 2.5 64 86
0-4.0 1.7 3.2 38 71 1.6 2.9 59 88
0-6.0 1.6 3.4 34 72 1.5 3.1 55 89
0-8.0 1.5 3.6 33 80 1.4 3.4 48 94
Zonal component of the wind velocity, m /s
0-0.2 2.6 2.9 66 76 2.4 3.0 65 81
0-0.4 3.2 3.3 78 80 2.5 3.1 64 79
0-0.8 3.3 3.4 75 77 2.5 3.1 60 74
0-1.2 3.4 3.5 66 69 2.5 3.0 57 68
0-2.0 3.7 3.8 64 66 2.5 2.9 52 60
0-4.0 3.6 4.0 54 60 2.3 3.0 46 60
0-6.0 4.1 4.2 54 55 2.4 3.2 41 54
0-8.0 4.3 4.4 51 52 2.8 3.4 42 51
Meridional component of the wind velocity, m /s

0-0.2 1.8 3.4 50 94 2.0 3.5 56 97
0-0.4 2.2 3.4 59 87 2.1 3.5 55 92
0-0.8 2.4 3.5 58 80 2.2 3.5 55 85
0-1.2 2.5 3.6 51 73 2.4 3.5 56 81
0-2.0 2.5 3.5 41 57 2.8 3.4 57 69
0-4.0 2.9 3.8 37 49 2.9 3.3 50 57
0-6.0 3.4 4.3 37 47 2.8 3.4 43 52
0-8.0 4.1 4.8 39 46 3.1 3.5 42 48
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Analysis of data presented in Tables 1 and 2 shows
that

— the Kalman filtering algorithm based on the use
of the polynomial model with varying polynomial
parameters gives quite acceptable accuracy of spatial
extrapolation, especially, at a distance of 185 km.
Actually, at the distance of 185 km, regardless of the
weather parameter, season, and atmospheric layer, the
relative error of such extrapolation varies mostly from
30 to 51% (for temperature) and from 38 to 66% (for
the zonal and meridional wind velocity components);

— the Kalman filtering algorithm gives the best
results at extrapolation of the layer-mean values of
temperature, when, regardless of season, the rms errors
of such extrapolation do not exceed 1.9°C and even
1.1°C in summer above 3 km;

—the quality of spatial extrapolation of the
parameters <I>j ;, <U>; j, and <V>; ,, as would

be expected, worsens markedly with the distance. Only
in winter at extrapolation of the layer-mean values of
the meridional wind up to the distance of 250 km, the
results are somewhat better than at the same
extrapolation up to 185 km, when it is performed
against the zonally mean west-to-east transport;

— finally, the Kalman filtering algorithm gives
the higher-quality results on spatial prediction than in
the case of using optimal extrapolation method, and
this algorithm provides for the highest gain when
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predicting the layer-averaged values of temperature in
the free atmosphere (above 2 km).

Thus, the statistical estimation of the quality of
Kalman filtering algorithm using the polynomial model
with the varying polynomial parameters showed that
this algorithm is rather efficient. It almost does to yield
to the algorithm proposed in Ref. 1 in quality and can
be successfully used for spatial extrapolation of the
layer-mean values of temperature and wind velocity
components for meteorological support of numerical
prediction of the spread of technogenic pollutants over
a mesoscale region.
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