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Synthesis of wavelet basis for analysis of optical signals.
Part 1. Orthogonal wavelet basis
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To restore and analyze random optical signals, various orthogonal bases are used. The algorithm
enabling one to synthesize orthogonal wavelets obeying the condition of multiple scale analysis is
presented along with a large number of new wavelets obtained with this algorithm. Orthogonal
symmetric wavelets are synthesized. Examples of image compression and filtering are presented. Local
properties of wavelets and the possibility of expanding signal about inhomogeneity scales are

demonstrated.

The intensity and phase of optical radiation having
passed through the atmosphere with random
inhomogeneities are used to reveal the information
about the atmosphere or for information transmission
through it. Due to interaction with a turbulent
medium, the phase and intensity of a wave become
topologically complex objects. A smooth shape of the
wave front transforms into a discontinuous broken
structure with power-law peculiarities and singularities.

For simple and convenient analysis, these complex
mathematical objects will conditionally be called
random optical signals, which are usually presented by
sums of orthogonal components in an infinite number of
ways. Since every time the system of orthogonal
functions used for expansion is known, the intensity
and phase of an optical wave are fully determined by
the sets of weighting factors for these functions.

Such sets are spectra of optical signals. The
spectrum is the only possible form of analytical
presentation of signals within the framework of a linear
theory, and the problem reduces to selection of suitable
basis set of functions convenient for solution of that or
other practical problem. The adequacy of a restored
signal to the actual one depends on how successful is
selection of the basis set. In solving the problems of
field reconstruction, it is necessary to store large data
arrays, to remove image noise, to shorten the data
processing time, and thus to approach the real time
scale of a physical process, and to follow evolution of
the signal frequency due to different time and spatial
scales of inhomogeneities.

In this paper, we do not consider polynomial
functions, whose smoothness makes them to behave in a
certain manner, because signals, we deal with in
practice, are thought to be continuous, but
nondifferentiable. Polynomial functions are not flexible
enough to follow up the jumps and power-law
peculiarities in realistic signals. Therefore, in this paper
we consider wavelet bases possessing the fractal
property of self-similarity and allowing singularities
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and breaks of the studied signal to be followed up. A
remarkable property of self-similarity is a cause for
other wuseful properties, such as locality and the
possibility ~ of  fast  transformations,  high-degree
compression of signals and images, separation of
singularities and fractal structure of a random signal,
and expansion of the studied signal about scales of
inhomogeneities.

Now there exists a wide class of wavelet bases of
different nature, but their mathematical description is
poorly covered in our domestic literature. The number
of publications on synthesis of wavelet transformations
is not large. Let us note some of them. Reference 1
considering  possible  applications  of  wavelet
transformations is interesting and useful. Most
informative are Refs.2 and 3, which present
classifications of wavelets and all the needed theorems
on synthesis of wavelet transformations. Recently we
have got the translations of the outstanding basic books
by Daubechies? and Chui® on wavelet construction.
And, finally, the most powerful source of information
about wavelets is Internet. On such sites as
www.mathsoft.com /wavelets.html, www.wavelet.org,
www-stat.stanford.edu /~wavelab, and www.math.spbu.ru
/user/dmp, one can find the information about
programs, papers, and conferences on the theory and
applications of the wavelets. The latter of the sites
listed above is the site of St. Petersburg Seminar on
Wavelets and Their Applications. For engineers
interested in application of specialized software on
wavelet transformations, we can recommend the well-
known MATLAB-6.1, Mathematica-4, and Mathcad-
2001 (Wavelet Extension) software packages.

In this paper, we perform synthesis of new wavelet
bases and demonstrate their application to signal
processing. These wavelet bases are new, because no
one of the wavelets obtained below falls in a known
group presented in the literature. Below we will
consider the synthesis of symmetric wavelets, which is
principally impossible as stated by the authors of many
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papers devoted to this subject. From a wide class of
wavelets, we will construct only orthogonal wavelets
and only those of them that have the multiple scale
features. It is just this feature that allows realization of
efficient fast expansion and restoration algorithms.

For convenience of analysis, the studied signal
f(x) is expanded into a series over orthonormal wavelet
functions
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The expansion coefficients are determined by the scalar
product
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Let us construct the basis function W(x) used in
Eq. (1). In so doing let us choose the scaling function
¢(x) having the fractal multiple-scale feature:

N
o(x) = X pr o2 — k). 3)
k=0

This equation is called the scaling equation and is the
basic one in the wavelet theory. It serves a tool for
construction of new wavelets and gives a significant
gain in the computation speed. Note that the function
¢(x) has no analytical form. It is formed as a result of
compression and shift of self-similar functions. The form
of the function @(x) is determined by the expansion
coefficients and their number, that is, the upper
summation index. The upper index N is also the support
of the function ¢@(x), N =supp¢e(x). To find this
function means determination of the coefficients of this
expansion.

Let us write the needed system of equations for
the coefficients. For this purpose, subject the function
¢(x) to the normalization condition

f o(x) dx = 1. (4)

For the coefficients this equation transforms into the
following form:

M=

Pr = 1. (5)
k
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Assume that ¢(x) satisfies the conditions of

orthogonality
<(P(X),(D(JC - k)> = 6Ok~ (6)

Substituting Eq. (3) into Eq. (6) we obtain for the
coefficients

N

Zpk pk+2m=60m, m = 0, ceey N/2 (7)
k=0

Yu.N. Isaev

The wavelet function W(x) in this case is determined by
the equation?>:

N
() =Y (-0 pyy, 0Q2x - k), ®)
k=0

which is a corollary of the equation

}‘P(x) dx = 0.

0

The system of equations (5) and (7) is needed to solve
the wvariational problem on determination of the
coefficients to construct wavelets. For example, at
N = 4 we have the equations

4
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To restrict ambiguity, in Ref. 3 it is proposed to invoke
the equation of moments for the function @(x):

f(p(x) xm dx =M. Then we obtain some more

equations

N
S D R =M, m=0,...,N/2.  (10)
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However, under such additional conditions, the
convergence of numerical, variational algorithms depends,
to a high degree, on the proper selection of the initial
values of the coefficients. This requires certain skills
from an investigator. If the initial, starting values are
not properly chosen, the iteration algorithm may fail to
converge. Wavelets not obeying the restriction (10),
that is, wavelets with lower smoothness, are excluded
from the solution. Therefore, we need rigorous
conditions, which, on the one hand, should allow some
freedom in choosing the initial values of the variational
algorithm, but, on the other hand, they would allow us
to find all possible solutions.

I succeeded in obtaining a criterion, which is, in
essence, a more rigorous requirement for orthogonality
and can be expressed by the equations

N
2 Pr Pret = b1, (11)
k=0
N
> Pk Pre3 = b3; (12)
k=0
b3 =0.5 - b1, (13)

where b1 < 1/\/§ and b0 =1, b2 = b4 = 0 according to
Eq. (7). Note that the index of the coefficients b
corresponds to the fixed index in Egs. (7), (10), and
(11). Continuously decreasing the value of the
coefficient 1 from the maximum of ~ 0.56 and using
Egs. (11)—(13) along with Eq. (7), we can obtain all
possible values of the coefficients for construction of
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orthogonal wavelets. With this algorithm, we can, for
example, follow the evolution of transition of the
known second Daubechies wavelet into the first Haar —
Daubechies wavelet. In the gap between the first and
second wavelets, this algorithm shows a cascade of
wavelets with different degree of smoothness (Fig. 1).
Using this algorithm, I have obtained a wide variety of
wavelets @(x) with different degree of smoothness and
different N supports, and, starting  from
N = suppe(x) =5, one of a set of solutions was for a
symmetric wavelet. Some of solutions were obtained
analytically.

After determination of the coefficients, it is
necessary to present graphically the scaling ¢(x) and
wavelet W(x) functions. As was said above, these
functions have no analytical form. Therefore, let us
describe an algorithm for graphical representation of
the functions @(x) and W(x). For this purpose, we will
use Eq. (3)

1\]
o) = X pr 0Q2x = k).

(14)
k=0
Let us take discrete values s=1,2, ..., N—1 as «x,
then Eq. (3) can be rewritten in the form
N
0(s) = D pos—r 9(R). (15)

k=0

It can be easily seen that it is an equation for
eigenvalues, which can be presented as
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In particular, at N =4 we obtain the equation, in
which the matrix A has 3 x 3 dimensionality:

Pt po 0

A=| p3 P2 m 17

0 ps p3
Equation (16) for eigenvalues and the normalization

N
condition Y, (k) =1 allow us to determine ¢(x) at
k=0
the points x =1, 2, 3, ..., N — 1. Recall that ¢(x) =0
at the points x = 0 and x = N. Then we can find ¢(x)
at the points x/2 (x=1,2,...,N—1) using the
recurrence equation (14). Thus, iterations are continued
until the required accuracy is reached. The value of the
wavelet function W(x) is determined using Eq. (8) in
parallel with the scaling function ¢(x) at the same
points.

Let us present the coefficients obtained for the
functions @(x) and W(x) through solution of the
variational problem with the use of Egs. (7)—(11) at
N =4:

t-Na 34

a = 3.3431457; pg = o Pt g
5+[a 3 +[a 1 —fa
p2 = 6 v P37 6 v P4 T 12

and the graphical dependences of the functions ¢(x)
and W(x) obtained with the use of the algorithm

Ap = 0. (16) described above (Fig. 2a).
0 1 2 30 1 2 30 1 2 30 1 2 30 1 2 3 0 1 2 3
0 1 2 30 1 2 30 1 2 30 1 2 30 1 2 3 0 1 2 3

Fig. 1. Evolution of transformation of the Daubechies wavelet 2 into the Haar wavelet; scaling functions (top row) and wavelets

(bottom row).
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Fig. 2. Coefficients, ¢ (left) and ¥ (right) functions at N = 4 (a); demonstration of fractal structure of scaling function (b).
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Fig. 3. Model signal (@) and wavelet expansion of signal at
K =24, 26, 28 210 from top to bottom, respectively (b).

As can be seen from Fig. 2b, the scaling function
¢(x) has a fractal character. A distinguished small
fragment enlarged several times clearly demonstrates
the fractal character of the function ¢(x). Figure 3a
shows the model function with derivative jumps, and
Fig. 3b shows the successive stages of wavelet
restoration of the model function using an increasing
number of wavelets. At restoration, the coefficients
were sorted and less significant ones were rejected. This
process is called signal compression. The largest number
of the coefficients K in the expansion was 20 = 1024.

To synthesize a smoother wavelet, increase the
coefficient b1 in Eq. (11). After variation of the
coefficients, we obtain the following values and
graphical dependences for the scaling and wavelet
functions, respectively (Fig. 4a).

Let us present synthesis of a symmetric wavelet.
The symmetric wavelet, because of the symmetry of the
coefficients, allows the time needed for signal
expansion and restoration to be significantly shortened.
Besides, it is preferable because it usually has more zero
moments, what leads to better signal compression. In
the regions, where the signal is smooth, its expansion
coefficients for small scales are zero.

References 4 and 5 present synthesis of symmetric
wavelets within the framework of multiple-scale
analysis, but, unfortunately, they are either
nonorthogonal or weakly symmetric (symlets, Coiflets).
The categorical statement of impossibility to construct
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symmetric  orthogonal — wavelets? likely deterred
investigators from this problem. In our case, wavelets
acquire symmetry due to a small loss in smoothness and
accuracy. (Speaking about inaccuracy, we mean the error
not exceeding the desired level of accuracy in signal
restoration.) To synthesize a symmetric wavelet, we
have to solve the variational problem for Egs. (9),
(11), and (12) under the additional condition of
symmetric coefficients. After some simple
transformations, we obtain the following system of
equations:
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2pg — 2p1 + p2=0. (20)

The solution of this system is

\J15134 — 1030442

pPo=" 322

» P4~ Po»

42093 - 32242 — /15134 — 1030442
p2= 161 ’

P1=N=2p2 po, p3=p1.

2 2 2
205 + 207 + p5 =1, (18
Po™eprT P2 ) ) The obtained coefficients, scaling and wavelet
2po p2 = - pt, (19) functions are shown in Fig. 4b.
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Fig. 4. Scaling function ¢ (left) and wavelet function ¥ (right).
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7\ JANIAWAY For a wavelet to have higher smoothness, increase

N VvV VvV VV the support of the scaling function N = supp ¢(x). At
N =6 we obtain the coefficients and plots for ¢(x) and
W(x) that are shown in Fig. 4c. The wavelet obtained is
smoother and close to the symmetric one. Let us use the

}g}(
>
-
=~

d ' WO WM synthesized wavelets for signal compression. Impose 5%
b noise on the model signal (Fig. 5¢) and then try to

m ’Nm\ /A‘\ A remove it. The results of signal filtering are shown in
, Figs. S5c—e. The maximum number of the expansion

n A oW WV coefficients K was 29.

To improve the symmetry of the scaling function,
/A\ /ﬁ\ we should increase the support N and take into account

the additional condition of symmetric coefficients. For
example, if at N =7 we additionally assume py = p7,
P1=Ppg P2 = P35 P3 = P4, then the system of equations
/\ /\ reduces to four equations. Having solved this system,
/S \J U we obtain the group of wavelets shown in Fig. 6. It
should be noted that p; = —p, is valid for the first and
second coefficients. So, the system of equations could
be reduced by one equation more. Thus, it is sufficient

(><>g

N RGN L.

<><§
<

Fig. 5. Filtering of model signal; K is the number of
expansion coefficients: model signal (a), model signal with 5%

noise (b), signals restored at K =29 (¢), 27 (d), and 25 (e). to vary only three coefficients.
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Fig. 6. Scaling function ¢ (left) and wavelet function ¥ (right).
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Fig. 7. Model signal (a) and wavelet expansion of signal at
K =24, 26, 28 210 from top to bottom, respectively (b).
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Let us present the wavelet expansion of a broken
model signal shown in Fig. 7a. This expansion
demonstrates good local properties of wavelets. As a basis
one, we took the symmetric wavelet shown in Fig. 6a.

Present the coefficients and plots for some more
wavelets obtained by me by the algorithm described
above at N = 8 (Fig. 8a4), N =9 (Fig. 8b), and N = 10
(Fig. 8¢). Demonstrate the possibility of wavelets to
separate a signal according to the scales of
inhomogeneities. As an example, we will use the
wavelet shown in Fig. 8c.

The model signal is taken as a sum of two
sinusoids (Fig. 9a). The frequency of one sinusoid is 10
times higher than that of the other. The amplitude of
the high-frequency sinusoid is half as high as that of
the low-frequency one.

Figure 96 shows the low-frequency trend obtained
by retention of only first 25 terms of the expansion
from 210 along with the high-frequency trend obtained
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0 0
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o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
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0.053 0.053
p1 = ps = —0.004968
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Fig. 8. Scaling function ¢ (left) and wavelet function ¥ (right).
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Fig. 9. Model signal as a sum of two sinusoids (a), separation
of model signal according to scales of inhomogeneities with the
use of wavelet expansion (b), absolute values of the
coefficients of wavelet expansion of the model signal (¢).

by subtraction of the first 25 terms of the expansion
from 210 terms. Figure 9c depicts the pattern of
absolute values of the expansion coefficients that is a
scan of inhomogeneity scales of the model signal.

In this paper, a variational algorithm for
determining the coefficients of the scaling function in
the scaling equation is presented. The algorithm has
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rigorous restrictions providing for its fast convergence
and the possibility to determine all possible solutions at
the given support of the scaling function.

The variational algorithm allows synthesis of
orthogonal wavelets obeying the condition of multiple
scale analysis. A large number of new wavelets
synthesized by this algorithm are presented. Orthogonal
symmetric wavelets obeying the multiple-scale feature are
obtained for the first time. Some examples of image
compression and filtering are presented. Local
properties of wavelets are demonstrated along with the
possibility of expanding signals according to the
inhomogeneity scales.

In the second part of this paper, I plan to describe
in detail the algorithm for synthesis of nonorthogonal
symmetric wavelets. Algorithms for presentation of
differential and integral operators through wavelet
bases will be presented. These algorithms can be useful,
in particular, for modeling wave front slopes of a wave
having a broken structure (direct problem) and for
reconstruction of a signal from its local slopes with
fading areas (inverse problem).
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