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Differential equations for time-dependent amplitudes of coupled waves at the Stokes frequency
and the frequency of incident radiation in a spherical particle are obtained based on the method of
expanding optical fields into a series over eigenfunctions of the stationary linear scattering problem.
Solutions of the equations for the start of the SRS process and under steady state conditions are
analyzed. The SRS threshold is determined, and the threshold for the steady state SRS at a given
intensity is found for the case of double resonance between the fields. It is shown that to excite the SRS,
one should compensate for the loss of the Stokes wave due to absorption and emission through the
particle surface. To provide for steady state SRS generation, it is necessary to additionally compensate for

the energy loss due to pump depletion.

Introduction

The studies of Stimulated Raman Scattering (SRS)
generation in microparticles under the exposure to high-
power laser radiation are important, first, for Raman
spectroscopy of droplets, since they increase the
sensitivity and information content of measurements as
compared with a linear case.! On the other hand,
problems of lasing at whispering gallery modes in
microcavities are now actively discussed in the literature,
that is, in the case that a microparticle plays the role of
a microlaser.2:3 The overview of these problems can be
found, for example, in Refs. 1, 4, and 5.

The nature of stimulated emission from a spherical
microcavity is connected with generation of radiation
being in resonance with the cavity’s eigenmodes.
Therefore, the experimental and theoretical aspects of
these two research areas have much in common. It should
be noted that mostly the publications concerning this
subject describe experiment. They consider physical
grounds and report some findings on the SRS and
Stimulated Brillouin Scattering (SBS) processes, third
harmonic generation, induced fluorescence, and lasing
in microparticles. To make these studies comprehensive,
it is necessary to complete them with a consistent
quantitative description of the generation process, which
would allow one to correctly interpret and explain
experimental findings, as well as to predict results
anticipated from new experiments planed.

In this paper, we consider theoretical description of
the SRS process in a transparent microparticle based on
the method of expansion into a series over eigenfunctions
of the problem on steady state linear scattering. The SRS
effect in a particle is analyzed at the time of its initiation
and under conditions of steady state scattering.

Basic equations

Assume that only two waves take part in the process
of nonlinear scattering, namely, the pump wave and the

0235-6880,/02,/12 988-06 $02.00

Raman scattering (Stokes) wave with the frequencies
o, and o, respectively, which are related by the phase
matching equation og = o, — Qr (Qg is the frequency of
molecular oscillations). The wave equations under these
conditions have the following form:

g, 02 Ey(r; t)
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where E; and Eg are the real electric vectors of the
pump and Stokes waves, respectively; €, and o are the
dielectric constant and conductivity of the particulate
matter; ¢ is the speed of light in vacuum; PI]\“I and PﬁI are
the real vectors of nonlinear polarization at the
frequencies ®;, and . The medium is assumed
nonmagnetic and isotropic; dispersion effects are ignored.
The equations for the fields (1) and (2) are completed
with the corresponding boundary conditions? consisting
in the continuity of tangential spherical field components
(0 and ¢ components) at the particle surface:

(EL)G,(p = (Eic)e,(p + (Eli‘)e,(p;
(HL)e,(p = (Hic)e,(p + (Hli‘)e,(p;
(Es)e,(p = (E:C)e,qw (HS)Q,(p = (H:C)e,qw

where the superscripts “sc” and “i” are for the scattered
and incident radiation, respectively.

Let us pass from the real field vectors to their
complex representation:
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2E(r; t) = ]NE(r; £) et + E*(r; t) e ot
2Pp(r; t) = f’N(r; t) et + ﬁ:/(r; t) et

where E, Py are slowly varying functions of time, and
represent the fields of interacting waves as series over
particle’s eigenfunctions ETE TH(p) HZ;:’TH(r) that
describe the spatial profiles of the fields of TE and TH

vibrational modes with the frequencies 0357];: TH,

ELn 0= 3 ¥ 1A% B - i8530 EN);
n=1 p=1

Hy ((r; t)=\/8_a§ % iALS () Hyp (o) +

(t) H! (r)] (3)

where the functions Am,(t) and BY (t) describe

time behavior of the fields. The functlons ETE TH(r),

HZII;: T™(+) forming the orthogonal system Wlthin a

sphere satisfy homogeneous Maxwell equations and are
expressed  through  vector  spherical  harmonics
M, (7,0, 9), N,,,(r, 0, 9).6

Substitution of Eq. (3) into Egs. (1)=(2) after
some transformations (see Ref. 7) leads to the system of
differential equations for the expansion coefficients of
the incident and Stokes waves. Consider waves with TE
polarization. The corresponding equations have the form:

2 d R
22 A (0 + 2055 2 AL + o, AT () = 530, (4)

where the “stimulating forces” are expressed as:

o Py
an(t) = an(t) +_ fEnp o dr,
4n ¥ & N
an(t) == € np atz dr. (5)

a

Here F,Z}J o/ [20,,(0r )] is the mode attenuation
factor; Oy, is the particle’s total Q-factor that accounts

for the total mode loss due to absorption and emission?;
V, is the particle volume. The term an(t) is connected
with the influx of electromagnetic energy into the
particle from the incident radiation; it can be found
from the linear elastic scattering problem.”

Let a plane wave

E'(r; t) = Ey p, [(£) explilort — k2],

be incident onto a spherical particle. Here E is the real

amplitude, p, is the wave polarization vector, ki =

=0y /¢, and ?(t) is the function of time (time profile of
the radiation). From here on we restrict our consideration
to the situation that radiation pulses incident on the
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particle have such duration that the delay effects of
optical fields at scattering can be neglected. Under these

conditions, for F,,, (t) we obtain:

lC
F”p(lf) = X

" {fs [‘”"P (E' x Hy,) ~

= Ey f(t) Ky, (6)

i % (H' x EZP):| - n, ds} =

Here f(t) = f(¢) expfio;t}; E', H' are the vectors of the
electric and magnetic fields of the incident wave; n, is
the external normal to the particle surface limited by the
surface S,. In this equation, the coefficient K3, accounts
for the degree of excitation of the internal field mode
(with the index “np”) by each external field mode (with
the index “n”). At circular polarization of the pump
wave (p, = e, + ie,, where e,, e, are basis vectors) for
the considered TE modes of the internal field, it is
equal, in particular, to

. ic? R, e
Knp - €q kL Zp v, \Vn(kLaO) Yn (naknpa()) -
1 o1,
T Wn(kLa()) Wn(na npa()):| )
a Onp

where ky, = ©,,/c; z,, is the normalization coefficient
for the eigenfunctions:

2n n: ]
Zyp = f do f sin® do f 7 dr‘an|2;
0 0 0
v, are Riccati—Bessel spherical functions; R,=1i" (2n +
+1)/[n(n + 1)]. Primes stand for derivatives with
respect to the full argument of the function.
It should be noted that the equations for the

coefficients of TH modes B,,(¢) are fully similar to the
system (4). The only difference is the equation for the

coefficients K, np-
Quasistationary approximation

The differential equation (4) is solved in the
approximation of slowly varying amplitudes, that is, it

is assumed that A;,(t) = A;,(1) ¢! where Ay (D) is
the slowly varying amplitude, or, what is the same, in
the quasistationary approximation. The vectors of
nonlinear polarization responsible for Raman scattering
in the isotropic medium can be presented as follows for
the waves with the frequencies o1 and oy:

Pli(r, £) = 1 (0p) [Elr, £) - EX(r, )] EL(r, ),

PY(r, £) = 10y [EL(r, ) - Ef(r, O] x

x Ey(r, t) + Py (r, 1), )
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where xg) is the nonlinear (Raman) third-order dielectric

susceptibility of the medium, and Ime)(wL)—

——ImXR)((o) PN (r, t) is the nonlinear polarization
responsible for spontaneous Raman scattering.
At Raman resonance, the Raman susceptibility

becomes purely imaginary
2
 NoTy ( 6a
Y 16mOg | o,

and it is usually related to the steady state SRS gain
factor g:

(3)(0)5)

> Im (). 9

Here qy, is the coordinate of nuclei displacement in the
molecule; a is the medium polarizability; m is the reduced
mass of the molecule; Ty is the cross-relaxation time; N
is the concentration of medium molecules.

Because of the stochastic nature of spontaneous
scattering, to reveal the form of the last term in Eq. (8),
we have to solve the equation for the harmonic oscillator
under the effect of a random force for the complex
function ¢, (see, for example, Ref. 8):

32% 8
at + 2T, =~ ot + QR qr = fb‘(l’7 t) + fsp(l‘; t), (10)
where
* 1 oo
20 = Gk * 3 [E = 3 50, n(EL - E, )
is the stimulating force — the source of stimulated

emission; n, is the difference in population of the energy
levels active in the Raman transition (in our
approximation it is thought constant); Tj,=1/Ty;
fsp(r; t) is the random distributed force. As to the latter,
it is assumed delta-correlated in space and time

<fsp(r; t) fsp(r’; t')> = F(z)S(t - t’) S(Y - 1")',

Fy is the root-mean-square amplitude of a random
perturbation determined through the Raman scattering
cross section of the matter.

At Raman resonance, the solution of equation (10)
has the form:

e b
qgp(t) = te: f sin[Qr(t — )] " [fr(t) +
0

+ o] dt' = g + giP(®),

(o).R = QR \'1 - (ri/Q%{)

For the spontaneous component of the Stokes
polarization, we obtain:

where

Pf\?(r, t) = ((fp) E;(r;t) +ccw~
No a P

Lo = . iogt— gt s o

" 0O 20 Ei(r;)e {sm[QR(t ] x
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x el k' f:p(r; t') dt' +c.c, (11)

where IEL is the slowly varying function of time.
Transform Eq. (5) for the source of the Stokes wave
Jnsp. For this purpose, let us expand the fields into a

series over particle’s eigenmodes and take into account
Eq. (8). As a result, we obtain:

Jnsp(t) T €q Z,: , @

n

3)
4 (©W)
R (o, 2 [|A ZZA‘?W(D}

P m q

f (En 'p’ E; p

(qu ' E:;p) dr + F:zl;)(t)v

where
2 DS
4 o Py
Sp __Z2n *
an(t) = € f Enp 8t2 dr

Va

is the source of spontaneous radiation at the frequency
. By definition, the eigenmodes, over which the field
is expanded, are believed interacting with each other
within the volume of the particle-microcavity.9 Energy
exchange between the modes is possible only in the
presence of local inhomogeneities in the dielectric
constant or through mode interaction on the particle
surface at its deformations. Consequently, in the equation
obtained, we can omit summation over modes of the
Stokes field. With the allowance for Eq. (11), we obtain:

° g
875(05

I (D) =

X
d_2 | L |2 S np sp
X Z Z dtz[ An’p'(t) Anp(t)] n'p' + an(t), (12)

where SZI;, stands for the integral of spatial overlap of

optical modes belonging to the incident and the Stokes
waves:

Sty = [ 1By - Epy) - (Byy - Epldr,  (13)
Va

and summation is taken only over the pump field modes.
Coming back to Eq. (12), note that every pump
field mode contributes to the development of the selected
mode of Raman scattering wave, and its contribution is
proportional to the parameter of overlap of these modes.
Within the quasistationary approximation, the

initial equation takes the form:

dG, (1) d A5,(t)
{21'@3 + 0TS, + ﬁ[ —i— + o, G;p(t)} } —
S

2i I3 d G,(t) ;
2] \2 p 270w s
+ o [Anps + o - o)g T + ~ an(t) X

x A3p(8) = Fb (1), (14)

where A, = (0,, — o)) /o is the relative frequency
detuning of the Stokes field mode;
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iy D17 Sk

np(t
n p'

Express the amplitude coefficient of the Stokes mode
A;,,(8) through the integral equation. Under conditions
favorable for the development of stimulated emission at
the long-living resonance modes (o  >>T5, ;p), this
equation can be written as:

np»

A5,(0) = A9, (1) PP exp [i, ¢+ igh, (D], (15)
In Eq. (15), the following designations are introduced:

Oy =0y (1= Ay, /2)

is the mode frequency of the Stokes wave field generated;
t

1 ‘
(G5, (t) = T3, 1 de;

s
Pnp
0

t
i
D30 =5 (1= A [ Gy, (t) = 21,1 dr

0

is the function accounting for the mode gain and
attenuation;

—-D;,,(¢) ’
nps(t) 2 (J) f P Fsp(t )dt

is the amplitude factor characterizing spontaneous Raman
scattering.

The equation for the intensity of stimulated
scattering wave averaged over the particle volume

1.0 = f I(r; £) dr =

a

gy, 2 Z 14,01
n o p

with the allowance for Eqs. (9)—(15) under condition
of resonance excitation (Anps= 0) can be written as

(mode indices are omitted):

1) = T () 2P (16)
Here

2 ¢
S LTI Oy
P [ ng QR 0qyp

x XY |Ag, ) ]* sk, de
n p
characterizes the intensity of spontaneous Raman
scattering. The intensity I, tends to saturation as the

factor D® increases.
For the pump wave, the integral formulation of the
problem is as follows:

Abp(t) = np]_(t) e ~Dy(0) exp [1conp(t) + 1q>np(t)]

where

Vol. 15, No. 12 /December 2002,/ Atmos. Oceanic Opt. 991

2

oL Appy. Wpp — OL

Onp = OL 1= 2 ) AHPLZOJ—L;
t

o8 = = 5= [ G (t) + T, 1 dt;

0

D0 =5 (1 =82, [ 1G5 ) + 21l 1 des

0

f D) i H(¢)dt;

Ay, () = 21co

2
G (1) = zz |45, 17 S)h.

SRS thresholds

To find the SRS threshold, we have to express the
volume-averaged pump intensity inside the particle YL
through the incident radiation intensity ]0=CE(2)/ 8m.
Two problem formulations are possible, namely,
(1) determination of the threshold for initiation of
stimulated emission; (2) determination of the threshold
for SRS generation with the intensity exceeding the
intensity of spontaneous scattering. Consider the first
one. Here we can apparently use the approximation of the
given pump field.

The function G;p can be presented as follows:

Gop(0) = (cgs/ng) B 11.(0), 17)

where

- 1
I =3 [I; 0 dr=3
a
Va

iy (18)

PID IRV LI LR R E L)

B (oy; (an) =
TE[L n ]J'

is the normalized coefficient of spatial overlap of
interacting fields inside the particle. The coefficient B
weakly depends on time both at the initial stage and at
the stage of steady state SRS. At the initial stage of the
process, it can be calculated separately in the linear
approximation, that is, within the Mie theory. In this
case, B" is largely determined by the particle
morphology and optical properties. In the case that the
Stokes wave field can be assumed single-mode (mm, =0y),
from Eq. (19) with the allowance for Eq. (13) it
follows that

-1
B (op; 09 = V [f ) dr} x
Va
x [ (B, Ep) P | A%, |2
nwp

Va

(Eyp - Eyyy) dr.
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After convolution of the sum in the right-hand side
of this equation and making use of the identity following
from the eigenfunctions normalization condition

45,12 = [ (B EY) dr,
Va

Eq. (19) for the field overlap coefficient takes the
following form (mode indices are omitted):

—1
Blog; 0 =V, [ [ E-EDdr [ (ES~E:)dr} .

Va Va

x [ (EL-E}) (E- E) dr. (20)
Va

Within the approximation of the given field, the
ratio Iy /I is constant in time and determined by the
following integral equation:

- (B E®d. )
Va Eg
V(l

Note that in the majority of cases the factor By is equal
to unity and significantly differs from it only at resonance
excitation of the particle by the pump field.

Then, finally, the energy density of the incident
light wave wg, at which stimulated emission occurs in
the particle, is determined by the following equation:

wy > wf)h =n, o t/(cge Os BL). (22)

In Eq. (22), the effective coefficient of SRS
amplification in the microcavity is introduced as

ge = g5 Be.

This coefficient reflects the difference in the rate of the
Stokes wave generation in the particle as compared
with the extended medium. This leads to a significant
decrease of the process thresholds and in some cases
allows the continuous-wave radiation to be used to
pump the microcavity.10.11

Figure 1 shows the dependence of the g./g; ratio
on the effective Q-factor of the Stokes field eigenmodes
Qs. The calculation was performed for water droplets of
different  radius (n,=1.33, AL =0.53um; A =
=0.65um) in two situations of nonlinear interaction
between waves: resonance of only the Stokes field
(“single” resonance) and resonance of both waves
(“double” resonance).

It follows from Fig. 1 that the ratio g, /g5 is close
to unity at nonresonance SRS excitation. A significant
growth of the efficiency of nonlinear interaction is
observed only in the case of double resonance between
the fields. This circumstance was noticed for the first
time in the experimental paper!? when studying the
SRS excitation thresholds in droplets of a water
solution of glycerin. Detailed theoretical studies of the
coefficient of spatial overlap of the fields at different
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variants of SRS and SBS excitation in spherical particles
were performed, for example, in Refs. 4 and 13.

2 O
16L 9e/9s

12+

0

1 102 104 106 Qq
Fig. 1. The dependence of g./gs ratio on the Q-factor for the
resonance modes Qg of the Stokes field at excitation of the
SRS due to single (1) and double (2) field resonance. Solid
line is a guide for eye.

If the incident radiation is long enough in time,
then we can turn to the radiation intensity in place of
the energy density in this equation. Thus, the condition
of SRS generation at continuous or quasicontinuous
pump takes the following form:

Ng O ng V, op o
— =
¢ge Os BL ¢ Je ch(aO; mL) 01.0s

Iy> I = , (23)

where c..(ag; o) is the extinction cross section of a
particle for the incident radiation. This equation was
earlier derived in our papers 4 and 13 when considering
the energy balance of the Stokes wave in a particle.

Let us emphasize once more that the considered
excitation threshold of the Raman wave corresponds, in
fact, to fulfillment of the condition for appearance of
positive feedback in the particle-cavity for the Stokes
wave, when its total loss due to absorption and emission
through the particle surface becomes equal to the gain
due to nonlinear interaction with the pump field. The
intensity of stimulated scattering under such conditions
is low and, as is seen from Egs. (15)—(16), corresponds
to the intensity of spontaneous Raman scattering.

The problem of excitation of the SRS wave with a
preset intensity level involves determination of a certain

level of the SRS gain coefficient G® in the particle, which,
in its turn, depends on the pump wave intensity. The
solution to this problem can be obtained only
numerically, and we plan to present it in our following
papers. Here we restrict the consideration to analysis of
an important issue — the steady state of the SRS
generation in a particle.

At Iy > Igh the generation of stimulated radiation
occurs in the particle; this generation is, in the general
case, nonstationary, and the steady state SRS can be
established at a rather long irradiation. Such a steady
state SRS generation in a microparticle was observed
experimentally in Refs. 10 and 11.
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The condition for achieving a steady state nonlinear
scattering is the zero time derivative of the right-hand
side of Eq. (16). This is achieved, when the volume-
average intensity of the incident wave inside the particle
also reaches some stationary level

I3 =2n, T /(cgo). (24)

Let us find the relation of the intensity of incident
radiation I to the intensity of the steady state SRS, Izt.
Write the integral equation for the intensity of pump
wave field inside the particle under conditions of double
resonance between the fields, when the laser radiation
incident on the particle is in resonance with one particle’s
mode, and SRS generation occurs at other particle’s mode
(mode indices are omitted):

—2D(¢)

IO =12 e (25)

where

1) = (eny/8m) A1) [AL(D1*.

From Egs. (24)—(25) under condition of quasicontinuous
excitation, we have the sought relationship between the
steady state intensities of the interacting waves in the
particle and the pump intensity:

i = 4nl K, 12 1o /1(GY + 29 eny o7 ], (26)

Here Gl‘t is the value of the factor G“ in the steady
state case.

For a low-intensity Stokes radiation, Eq. (26)
transforms into the above equation for the threshold
intensity of the incident field leading to SRS generation
under conditions of a steady state pump. For generation
of the Stokes wave of higher intensity, the corresponding
threshold value increases by (1 + GSLt/Zl"L)2 times.

Thus, at a steady state generation of the Stokes
radiation, the energy of the incident light field is
additionally lost in the particle-microcavity, and this is
equivalent to a decrease in the cavity Q-factor at the
frequency of incident radiation. In this treatment of the
processes, the relation for the threshold intensity of
incident radiation leading to the SRS in a particle
keeps true for the case of excitation of the SRS wave
having a finite amplitude with the only difference that
Oy in Eq. (23) is replaced with Q(1 +n)~%, where n
is the pump depletion factor.

This factor can be determined from numerical
solution of the stationary SRS problem. However, for
tentative estimates we can use its approximate value
obtained from the linear theory:

Fst
Cge OL —t QL s

n~21"Lnaa)s s _Qs jit '
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The level n =1 corresponds to the condition that
pump depletion should be taken into account. Thus, the
pump depletion conditions occur at

1= (Qy/0p) I
in the stationary SRS regime.

Conclusion

In this paper, we have considered theoretically the
process of stimulated Raman scattering in a transparent
microparticle using the approach based on expansion of
optical fields of coupled waves into series over
eigenfunctions of the stationary linear scattering
problem. Differential equations are obtained for time-
dependent amplitudes of the waves at the Stokes
frequency and the frequency of the incident radiation in
a spherical microparticle. Analysis of solutions of the
equations for the initial stage of the SRS process and
the conditions for occurrence of the steady state showed
that the threshold of SRS excitation is determined by
the loss of the Stokes wave due to absorption and
emission through the particle surface. To provide for
steady state SRS generation, one should additionally
compensate for the energy loss due to pump depletion.
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