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The principles and algorithms for realizing the method of ultra-short-term prediction of
atmospheric parameters using the Kalman filtering are considered, and results of their qualitative
estimation based on the data of lidar wind measurements are presented.

Introduction

Investigations related to super-short-term (with
forestalling up to 12 hours) forecast of wind in the
near-ground layer of the atmosphere fill a highly
important place among the basic and applied
investigations into the problem of atmospheric
ecological monitoring over a limited territory. It is
caused by the fact that air circulation in this layer
significantly determines the state and evolution of the
level of pollution of a limited air basin.

One can judge on the role of wind in the
formation and evolution of air pollution field, in
particular, using the equation of budget (transfer) of an
atmospheric admixture. This equation for a particular
admixture in a turbulent atmosphere can be written in
the following form!:
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where S, is the volume concentration of the admixture
a; u, v, and w are the components of the wind velocity
in the coordinate system x, y, z; w, is the vertical
velocity of the admixture (w, < 0); k(z) and kq are the

turbulence coefficients at motion of particles along the

2 2
vertical and horizontal directions; A:6_+6_ is the
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two-dimensional Laplacian, e, = g,(x, y, z, t) is the
source (sink) of the admixture, i.e., the rate of its
appearance (disappearance) in a unit volume.

It is well seen from Eq. (1) that horizontal
components of the wind velocity play a significant role
causing the advective influx of the contaminating
admixture (second and third terms in the left-hand part
of the transfer equation). One should emphasize that
these components of the wind velocity are related to
the input parameters of the transfer model. So usually
they are calculated using a mesoscale hydrodynamic
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model (see, for example, Ref. 2). However, in using
the hydrodynamic model, we meet quite a cumbersome
algorithm for its realization and quite large
contribution of the errors in the initial data to the error
of the hydrodynamic scheme of forecasting.? Besides,
significant bulk of the observation data collected over a
territory are necessary in this case.

Taking into account all the aforementioned, as
well as the necessity of solving the problem of forecast
for a limited territory, we propose a simplified
dynamic—stochastic model based on the Kalman
filtering algorithm and stochastic differential equation
of the first order describing the dynamics of temporal
variations of a random process. The peculiarity of such
an approach is that the procedure of solving a
complicated system of hydrodynamic equations is
avoided. Besides, time variation of a parameter of the
atmospheric state (wind in our case) is a stochastic
process with known correlation properties. As a result,
at least, according to the approach proposed, the
forecast can be realized using the data of observations
at a single station. The dimension of the vector of state
is restricted, realization of the filtering algorithm is
simplified, and its stability increases noticeably.

The methodology and algorithms for solving the
problem of super-short-term forecast based on Kalman
filtering are considered in this paper. The results of
their qualitative estimation carried out using the data
of measurements of wind by means of three-path
correlation lidar are presented.

It should be emphasized first that investigations
into the problem of time forecasting of the parameters
of the atmospheric state (in particular, wind) realized
using Kalman filtering continue our previous
investigation,4 in which the algorithms were based on
the complex approach that used the procedure of
complication of the Modified Group Method of Data
Handling (MGMDH) and the method of optimal
extrapolation of a random process. In spite of its
noticeable advantages against traditional methods of
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regression analysis (the advantages include the possibility
of realizing the algorithm using the data of a restricted
sample, multi-criteria selection of the best model,
orientation toward obtaining the forecasting model of
optimal complication, etc.), the complex algorithm has
certain restrictions. They are mainly related to the
necessity of forming a preliminary sample of expeditious
data array of the total bulk of the order of N =k + 1
(here k is the number of considered levels or the layers
of the atmosphere) and to the requirement of equality
of the period of forecast with the period of observations.

The necessity appeared in this connection of the
development of new methods for time forecast, which
do not have such restrictions.

1. Statement of the problem
and forecasting algorithms in terms
of the Kalman filter

In synthesizing the algorithms for estimating and
forecasting in terms of the Kalman filtering it is a
general requirement that a possibility should exist of
representing a mathematical model of evolution of the
sought parameters of a dynamic system in the form of
differential stochastic equations of the first order. In
our case the dynamic system is the atmosphere, the
parameters of which (for example, wind) are random.
Let us synthesize the algorithm for estimating and
forecasting supposing that the correlation properties of
the meteorological parameters interesting for us are
known.

By virtue of the temporal randomness of the
values of meteorological parameters, their statistical
properties can be set by corresponding correlation
functions p(t). Passage from correlation functions to
differential equations describing the dynamics of
variability of the random processes is realized by the
known operator methods using the Laplace transform.>
Depending on the meteorological parameter and, hence,
on p(t), differential equations describing the space of
states can take different forms.6 Let us give an example
of passage from elementary correlation function to a
differential stochastic equation.

The normalized autocorrelation function of some
meteorological ~ parameters, and, in  particular,
orthogonal components of the wind velocity, can be
represented by the exponential function of the
following form:

u(t) = exp(-ar). )

The Laplace transform of this function has the
formS:

L{n()} = L{exp(-an)} = 1/(s + ), (3)

where o = 1 /1 is the coefficient inversely proportional
to the correlation interval 1, s is the parameter of the
Laplace transform.

Assuming that L{u(t)} represents the transmission
function of a linear system with the “white noise” at
the input, one can write
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or, correspondingly,
L{EMYs + o) = L{W(1)}, (5)

where £(t) is the response of the linear system
(variability of the meteorological parameter) to the
input impact W(t) (“white noise”).

After application of the inverse Laplace transform
to the left- and right-hand parts of Eq. (5) and

replacing the operator s —)% we obtain the following

differential equation:

de@) _
n +ak@®) =W,
from which
d%t) - o)+ WD) (6)

Passage from differential equation to difference
can be done by means of the Euler method

de@) R AE()
dt At

where AE = [E(ty) — E(t)], at At = (ty — t1) > 0,
from which the formula follows
E(ty) = E(t)) — o E(ty) At + W(ty). @)

Equation (7) shows that the value of the process
£(ty) at the moment ¢ is determined by the value £(t;)
at the moment ¢{, time interval At, the value of the
coefficient o = 1,/13, and the value of the engendering
noise W(ty).

The difference equation (7) describing evolution
of the random process can be presented in discrete time
in the following form:

)

Bk + 1) =) — 0 DAL+ W) (8)
or

E(k +1) = £(R)(1 - aAt) + W(k), ©))
where £ =0, ..., K is the discrete current time with the

discretization step At (t; = k At); E(k) is the response
of the linear system (temporal behavior); W(k) is the
input impact (“discrete white noise”).

Formula (9) can be used as a model of the space
of states at synthesis of the algorithms for estimating
and time forecast of the meteorological parameter £(k)
within the frameworks of the Kalman filtering theory.

Let us determine the general ideas, which will be
put to the foundation of the method for the forecast
considered below. Let us suppose that the meteorological
parameters are measured at some point of the space, at
a discrete moments in time, and with the known error.
In this case the model of current measurements of the
meteorological parameter can be set as simple additive
mixture of the wuseful data (true value of the
meteorological parameter) and some addition (error)

Y(k) =¢e(k) + E(k), (10)
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where  Y(k) are the current values of the
meteorological parameters at the discrete time moment
k; E(k) is the true value of the meteorological
parameter, E(k) is the error in measuring.

Formula (9) determines the time behavior of the
true value of the meteorological parameter £(k). Let us
write the equation of states (9) and observations (10)
according to the generally accepted notations of the
Kalman filtering theory

X(k+1) = X(R) (1 — aAty) + W(k); (11)
Y(k) = X(k) + E(k), (12)

where X(k) is the variable of state to be estimated and
forecasting (in our case it corresponds to £(k)).

For a convenience of notations in terms of the
Kalman filter theory, let us present Egs. (11) and (12)
in the matrix form and define the components entering
the formula:

X(k + 1) = F(k)-X(k) + W(k); 13)
Y(k) = H(k) -X(k) + E(k) (14)

where X(k) and X(k + 1) is the vector of state of the
dimension (1x1) at the time moments k& and (k + 1),
respectively. Here Y(k) is the vector of observations of
the dimension (1x1); F(k) =[1 - aAty] is the
transition matrix of the dimension (1x1); H(k)= [1] is
the matrix of observations of the dimension (1x1);
W(k) = [W(k)] is the vector of noise of state of the
dimension (1x1); E(k) = [E(k)] is the vector of noise
of observations of the dimension (1x1).

Formalization of the matrices entering formulas (13)
and (14) makes it possible to synthesize the structure of
the linear Kalman filter providing for an optimal
estimate of the vector of state X(k). The optimal

estimate X(k) of the vector X(k) is considered to
average the value providing for the minimum of the
mean square of the error X(k)=X(k) —X(k) at any
moment in time k.

In this case the formulas for optimal estimating of
the vector of state X(k) have the following form:

X(k+1) =Xk +1k) + Gk + 1) [ Yk +1) -
~H() Xk + 1|B)], (15)

where X (k + 1]k) is the vector of forecasting estimates
at the time moment (k + 1) from the data at the step &,
G(k + 1) is the matrix of the weighting coefficients of
the dimension (1x1).

The following matrix equation is
calculation of the vector of forecast

X(k + 1|k) = F(k)X(k). (16)

The weighting coefficients in the linear Kalman
filter are calculated using the recurrent matrix equations
of the following form:

G(k +1) =P(k + 1|k)-HT(k) x
x [H(R)-P(k + 1R)-HT (k) + Rg(k + D], (17)

used for
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P(k + 1|k) = F(R)-P(KR)-FT(k) + Ry(k), (18)
Pk + 1|k + 1) = [1 - G(k + 1)-HR)]-P(k + 1]k), (19)

where P(k + 1|k) is the a posteriori correlation matrix of
the errors in forecasting of the dimension (1x1),
P(k + 1|k + 1) is the a priori correlation matrix of the
estimation errors of the dimension (1x1), Rg(k + 1) is
the diagonal correlation matrix of the noise of
observations of the dimension (1x1), Ry(k) is the
diagonal correlation matrix of the noise of state of the
dimension (1x1), I is the unit matrix of the dimension
(1x1), T denotes the transposition.

To start running the filtering algorithm (15)—(19)
at the moment k=0 (initiation moment), it is

necessary to set the following initial conditions: X(0) =
= M{X(0)} is the initial vector of estimates, P(0/0) =
= M{[X(0) - M{X(0)}][X(0) — M{X(0)}]T} is the initial
correlation matrix of the estimation errors, as well as
the values of the coefficients of correlation matrices of

noises Rg(0) and Ry (0). In practice the values X(0)
and P(0|0) can be set based on the minimum bulk of
data on the real properties of the system, and in the
case of the complete absence of useful data the values

are set to be X(0) = 0, and P(0[0) = I.

In our case X(0) =0, and P(0/0) = 62 (here
o =3 m/s is the rms deviation of the wind velocity
components, which characterizes their variability).

It should be noted that Eq. (16) determines the
algorithm for forecasting the meteorological parameter

X(k + 1k) in between measurements. Taking into
account Eq. (11), the solution (16) can be realized
recurrently with an arbitrary discretization interval At,
that makes it possible to provide for the forecast for
any time period until next measurement. The forecast
estimates are corrected at the moment of next
measurement by means of the filtering algorithm (15),
and then the forecast equation (16) continues to be
solved with revising the initial conditions. Thus, the
problem of time forecast is solved together with the
problem of estimating.

2. Results of numerical experiments
on estimation of the quality of forecast
by means of the Kalman filter algorithm

The Kalman filter algorithm considered above was
subject to qualitative examination at its application to
the problem of super-short-term (with forestall of 4 and
8 hours) forecast of wind in the boundary layer of the
atmosphere, where the principal transfer of pollutants
of the industrial origin is usually observed.” To do it,
the data of lidar observations of wind were used. The
data were obtained by means of the three-path
correlation lidar (its diagram and the operational
principles are described in Ref. 8) near Tomsk (56°N,
85°E) since June 10 till August 12, 1994. Total set of
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90 timed (2, 6, and 10 a.m., 2, 6, and 10 p.m.)
observations of the vertical distribution of the wind
velocity and direction in the layer 140 to 1140 m with
the vertical resolution of 100 m were used for numerical
experiments on estimation of the quality of the Kalman
filter algorithm. The data on the wind velocity and
direction served as the basis for calculation of its zonal
V, and meridional V, components.

It should be noted here that not the data of wind
measurements at fixed levels are usually used for
practical calculations of propagation of the cloud of a
polluting admixture of industrial origin, but their
values averaged over vertical layers.9 So the procedure
of averaging over layers was applied for forming the
initial sets of the data on the zonal V, and meridional
V, components of wind velocity. Averaging was carried
out by the formulas

h

<V, > = ﬁ IVx(z)dz , (20)
hy
{ h

<V, > o= m IVy(z)dz , 21)
hy

where the symbol <*> denotes the procedure of
averaging over the vertical layer of the atmosphere
h — hy (in our case hy= 140 m, and % = 240, 340, ...,
1140 m is the height of the upper boundary of the

Vol. 16, No. 2 /February 2003,/ Atmos. Oceanic Opt. 161

considered layer). The values <Vx>/z0,h and <Vy>;207h are

usually called the layer-average (or simply average)
values of the zonal and meridional wind.

As for estimation of the quality of the Kalman
filter algorithm at its use in the problem of super-short-
term forecast of the layer-average values of zonal and
meridional wind, it was carried out by means of rms
error of such a forecast 8¢ determined by the following

formula:
{n . 1,2
0 = ‘:; 2 (& - ii){' )
i=1

here %i and &; are the forecasted and measured values of
the meteorological parameter, respectively, and n is the
number of realizations processed), as well as the

(22)

probabilities of the errors in forecasting Ai=éi—§,
which are smaller or larger than certain preset value (in
our case smaller than +1, ..., #4 m /s and larger than
4m/s). Besides, the relative forecasting error
0=0:/0;, where o is the rms deviation of the
considered meteorological parameter, was also used for
the same estimate.

The rms errors §; and the probabilities P of the
errors in super-short-term (with forestall of 4 and
8 hours) forecast of the layer-average values of the
velocity of zonal and meridional wind below
+1, ..., #4 m /s and higher than 4 m /s by means of the
Kalman filtering method are presented in Table 1.

Table 1. Rms errors 5: and probabilities P of the errors in super-short-term forecast of the layer-

average values of the velocities of zonal and meridional wind below +1, ...,

+4 m/s and higher

than 4 m/s obtained by means of the Kalman filter algorithm and using data of lidar
measurements with forestall of 4 (1) and 8 (2) hours

Probability, Px102
Layer, S
o AV<im/s | AV<2m/s | AV<3m/s|AV<4dm/s|AV>4m/s
t 2 o2 2 ] 2] 2 1 2
Zonal wind (V)
140-240 | 100 100 100 100 100 100 100 100 00 00 0.1 0.1
140-340 [ 97 97 100 100 100 100 100 100 00 00 0.1 0.1
140-440 [ 93 89 100 100 100 100 100 100 00 00 0.3 0.3
140-540 92 89 97 97 100 100 100 100 00 00 0.5 0.5
140-640 [ 89 88 94 97 97 100 100 100 00 00 0.7 0.7
140-740 [ 86 86 94 94 97 97 100 100 00 00 0.9 0.9
140-840 [ 83 81 94 92 97 94 100 97 00 0.3 1.2 1.3
140-940 [ 80 78 94 89 97 92 100 94 00 0.6 1.3 1.9
140-1040| 76 72 89 83 97 89 100 94 00 0.6 1.5 2.3
140-1140| 67 61 87 81 97 86 100 92 00 0.8 1.8 2.7
Meridional wind (V,)

140-240 | 100 100 100 100 100 100 100 100 00 00 0.1 0.1
140-340 | 94 94 100 100 200 100 100 100 00 00 0.2 0.2
140-440| 89 88 100 97 100 100 100 100 00 00 0.3 0.4
140-540 | 84 83 97 94 100 97 100 100 00 00 0.6 0.8
140-640| 78 77 92 90 100 97 100 99 00 0.1 1.0 1.2
140-740 | 68 67 90 88 100 97 100 98 00 0.2 1.2 1.5
140-840 66 64 89 87 100 95 100 97 00 0.3 1.5 1.9
140-940 64 62 89 87 97 94 100 97 00 0.3 1.7 2.1
140-1040| 62 60 86 85 97 94 100 97 00 0.3 1.9 2.2
140-1140| 61 60 84 83 97 94 100 97 00 0.3 2.0 2.3
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Analysis of the data given in Table 1 shows that:

— First, the algorithm for super-short-term forecast
based on the Kalman filtering method provides for
quite good results. Indeed, the probability P of the
errors less than 1 m/s for time forestall t =4 and
8 hours is 67-100% for average zonal wind and 61—
100% for average meridional wind, and probability of
the errors less than 2 m /s is already 84—100% for both
components.

— Second, this algorithm provides for the best
results for forestall of 1 = 4 hours, when the rms errors
do not exceed 2 m /s in the entire considered layer of
the atmosphere.

Let us consider now the results of qualitative
estimation of the Kalman filtering method in
comparison to the complex algorithm used earlier
based on the procedure of combination of MGMDH
with the method of optimal extrapolation of the
random process. To do this, let us consider Table 2,
which contains the values of rms & and relative errors
6 in the forecast of the parameters <Vx>h0,/z and

<V’/>’10’h’ carried out with the forestall of 4 hours on

the basis of two alternative methods: the Kalman
filtering method and the complex method based on the
algorithm of MGMDH. The data on rms errors in
super-short-term forecast of wind carried out by means
of the complex method are taken from Ref. 4.

Table 2. Rms (3¢) and relative (6, %) errors in super-short-
term forecast (with the forestall of 4 hours) of the layer-
average values of the velocity of zonal and meridional wind
carried out by means of the Kalman filter algorithm (1) and
the complex method (2) from the data of lidar measurements

Zonal wind, m /s Meridional wind, m /s
5 0 5 0
1] 2 I 1 | 2 1 ] 2
140-2401 0.1 0.6 0.6 38 0.1 06 06 35
140-340| 0.1 0.8 0.6 44 0.2 0.8 10 38
140-440] 0.3 1.0 15 50 0.3 1.0 12 42
140-540] 0.5 1.2 20 57 0.5 1.1 20 44
140-640| 0.7 1.4 32 63 0.9 1.2 33 44
140-7401 0.9 1.5 39 65 1.2 1.3 41 45
140-840| 1.2 1.6 48 64 1.5 1.4 50 47
140-940| 1.3 1.6 50 62 1.6 1.5 50 47
140-1040( 1.5 1.7 53 61 1.7 1.6 50 47
140-1140[ 1.8 2.0 58 64 1.9 1.8 54 51

Layer,
m
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It follows from the analysis of the data collected
in Table 2 that:

— The Kalman filtering method (in comparison to
the complex method) provides for essentially higher-
quality results. Indeed, the least values of rms errors of
time forecast are characteristic of the Kalman filtering
method in the entire considered layer (up to 1140 m)
(compare: 0.1-1.8 m /s for the Kalman filter algorithm
and 0.6-2.0 m /s for the complex method);

— The Kalman filtering method provides for the
highest gain in accuracy under condition that the
height 2 <640 m (for the zonal component) and
h <540 m (for the meridional component). In these
cases the magnitudes of the rms errors &; are two and

more times less than the same error obtained using the
complex method.

Thus, the numerical experiments on estimation of
the quality of the Kalman filter algorithm at its use in
the problem of super-short-term forecast of the average
wind components have shown that this algorithm is
quite effective, it is superior over the complex method
in accuracy and can be successively used in practice of
the local atmospheric-ecological monitoring.
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