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An original technique and an algorithm for spatiotemporal extrapolation of mesometeorological
fields based on the procedure of optimal combination of the modified Group Method of Data Handling
and the Kalman filtering method are considered. The results of experimental study of the combined
algorithm performance are discussed for the case of its application to the problem of spatial interpolation
of the temperature and wind fields to a territory not covered by observations.

Introduction

In recent years, growing requirements to the data
of atmospheric and ecological monitoring of local
territories (e.g., a big city or an industrial zone)
necessitate development of new, more reliable methods
and algorithms for spatial extrapolation of meteorological
fields on the mesoscale. The temperature and wind play
a key role in atmospheric transport of pollutants,
therefore determination of the fields of just these weather
parameters is needed to evaluate spread of pollutants to
small (up to 100—200 km) distances.

For solution of such ecological problems, it is
necessary that the mesoscale temperature and wind fields
be specified with a sufficient vertical and horizontal
resolution. Thus, according to Refs.1 and 2,
extrapolation of meteorological fields in the atmospheric
boundary layer, just where the transport of pollutants
mostly occurs, should be performed with the height step
from 200 to 400 m and from 5 to 20 km in the horizontal
plane.

In practice such strict requirements are difficult
to satisfy, since

— the scale of extrapolation of mesometeorological
fields is much smaller than the separation between
stations of the global aerological network (this
separation ranges from 300 to 400 km [Ref. 3] even in
densely populated regions) and, consequently, the data
of this network do not allow reliable evaluation of the
structure of these fields with high spatial resolution;

— methods  of  spatial  interpolation  and
extrapolation used in current schemes of objective
analysis of meteorological fields (e.g., methods of
optimal  interpolation,  polynomial —and  spline
approximation34) do not yield reliable results in
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regions with wide spacing between stations, as well as
in predicting these fields to a territory not covered by
observations.

Taking into account all the above-said, specialists
from the Institute of Atmospheric Optics have
developed in mid-1990s an original dynamic-stochastic
algorithm for solving the problem on spatial
extrapolation of mesometeorological fields based on the
combined procedure of the method of optimal
extrapolation, which is widely used in practice of
objective analysis of meteorological fields, with the
Modified Group Method of Data Handling (MGMDH).
This algorithm is described in detail elsewhere in the
literature.>:6

Regardless of its remarkable advantages over the
traditional ~methods of regression analysis, this
algorithm has some shortcomings. In particular, some
sample of previous spatiotemporal observations is
needed, for its implementation, and calculation of the
weighting coefficients in the equation of optimal
extrapolation3 requires also the spatial correlation
functions obtained from the data of many-year
observations.

In this connection, this paper proposes an original
dynamic-stochastic algorithm for solution of the
problem on spatial extrapolation of meteorological
fields on the mesoscale. It is based on the procedure of
combining the MGMDH with the Kalman filtering
method and is free of shortcomings inherent in the
combination of MGMDH with the method of optimal
extrapolation.

An important peculiarity of the proposed
combined algorithm is that it allows spatial
extrapolation of mesometeorological fields to be
obtained not only during measurements, but also in the
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gaps between standard (synoptic) measurements. Another
peculiarity of the algorithm is that the scheme of its
realization differs by the number of observations. With
the number of observations K </ + 1 (where £ is the
number of altitude levels, including the surface one),
the procedure of spatial extrapolation is based on the
single method of Kalman filtering, which, in its turn, is
based on the simplified dynamic-stochastic model. With
the number of observations K > & + 1, extrapolation is
performed by the following algorithm:

— at the first stage, the Kalman filtering method is
used to extrapolate the surface values of the weather
parameter at issue to a given point based on
measurements at neighboring stations;

— at the second stage, this weather parameter at
the prediction point and the given time is reconstructed
at the needed atmospheric levels based on the MGMDH
and aerological observations at the nearest (to the
prediction point) station with the total number K = h.

Below we describe the proposed algorithm and
consider the results of evaluation of its performance
based on the data of many-year aerological observations
at the local network.

1. Formulation of the problem and
algorithms for its solution

The problem of spatial extrapolation of a centered
meteorological field & consists in estimation of its
values at the spatial point with the coordinates
(x,, Yn» 2,), measurements for which are lacking, based
on observations &; at the points with the coordinates
(xj, yi z) (i=1,2, ..., n—1) and some mathematical
model describing variations of the field £ in space and
time. The combined algorithm proposed assumes
simultaneous use of the MGMDH and the Kalman
filtering method that differ by spatiotemporal models
and the computational procedure. Let us consider
briefly the main peculiarities of the algorithms used.

(a) Modified group method of data handling

According to Refs. 5 and 6, the modified group
method of data handling is a method of structural-
parametric identification, which allows synthesizing
prognostic models based on limited @ priori information
under the conditions of partial or complete uncertainty
of knowledge about the structure of the process
modeled and the properties of noise in the initial data.
The MGMDH algorithms employs, as basis functions,
difference dynamic-stochastic models:

h—1

e
SnK+t = zAh,rﬁh,Ku—r +ZBh,f§j,K+1 +ep ket (D
=1 j=0

h=h*+1, h* +2, ..., hyax
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(here K* is the order of time delay (K* <[K -/ —1]/2);
Apy, ..., Ap g+ and By, ..., By j—y are unknown model
parameters; g, g+ is the model discrepancy) and, as the
initial data, spatiotemporal observations of the centered
field & at the points i in the form

Enp h=0,1, .., hpax, k=1, .., K},

(2)
Enp R=0,1, ., h* < hpay, kR =K+
In Egs. (1) and (2), % is the altitude; /#* is the altitude
of the top measurement level at the time K + 1; li, is
the maximum observation top before the time K; % is
the current time of observations; K is the sample size.

It should be noted that the first term in the right-
hand side of Eq. (1) reflects the relation between
observations at the altitude % and at the time point
K + 1 and those at the previous time points that arises
due to nonzero correlation length of the temporal
correlation function for the mesoscale atmospheric
processes. The second term reflects the correlation
between the altitude levels at the time point K + 1 that
arises because of turbulent mixing and regular vertical
motions.

To find the best prognostic model of the form (1)
and predict (reconstruct) successfully the vertical
structure of the field & at the point ¢, all initial
spatiotemporal observations (2) are used. These
observations are divided into two samples: the learning
sample a4 (it includes all observations before the time
point k= K — 1 inclusive) and the control sample ay
including observations only at the time point k= K.
Besides, two specialized methods are used for this
purpose, i.e., to find the best prognostic model.

1) Directional group trial-and-error method for
optimization of the model structure with the two-stage
model selection preformed with such a selection criteria as:

— final prediction error (H. Akaike?)

FRE = K=K =D+s pogesy, 3)
(K-K"-1)-s
K-K"—1 X
where RSS(s) = Z (& k—~ ih,K—j(S)]z is the rest
I=

square sum for the current model E,I‘K_]-(s) including s
nonzero estimates of parameters;

— root-mean-square prediction error for the control
sample, that is, the sample ay:

&k — Eng()] % - min, (4)

where the minimum is sought over all K*+h structures,

each described by its own model Eh 1(s).
2) Minimax estimation method (MEM)& used to
obtain estimates of parameters of the prognostic model

©, which ensures the quality of the corresponding
prediction estimated by the equation

s 2
M| M(E, gaq) — 511,K+1‘ < 8y K+
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(h=h*+1, ..., hypa), (3)

where M(e) is the operator of mathematical expectation
that performs averaging over all possible realizations of

observation errors; %h,Kﬂ and 8, x,y are the minimax
estimates depending on the variance of observation
errors and a priori information about maximum
acceptable prediction errors.

(b) Kalman filtering method

This method falls in the group of methods of
Markov optimal filtration theory!0 and provides for
estimation of the sought parameters with the minimum
rms error at every step. To formulate the problem of
spatial prediction by terms of the Kalman filtering
method, the weather parameters variable in space and
time were represented as the following dynamic
system?:

X(k+1 = X, (A1 -BA7, ) (1 - aAt) + w4 (k);

Xy (k+1) = X,,(R)(1 = BAr,;» )1 — aAt) + 04 (k);

(6)
X, 1(k+1) = X, (R -BAr, , )1 —aAl) + 0, 4(k);
X,(k+1) =X, (H)({1-aAt) + o, k),

where
| X, (k+1), Xo(k+1), X3(k+1), ..., X, (k+1) | T = X(k+1)

is the vector of state, whose elements are the values of
the homogeneous centered field & at the points with the
coordinates x; and y; (i =1, 2, ..., n) at the time point
k+1 (X, (k+1) is the value of the weather parameter at
the point (x, y,), for which measurements are
lacking); Ar,,; is the distance between the predicted point
n with the coordinates (x,,y,) and the measurement
points i=1,2,...,n—1; At is the time discretization
interval; k=0, 1, 2, ..., K is the current time with the
discretization interval At (¢, = RAL);

Q(k) = loi(k), 0y(k), 05(k), ..., o,k

is the column vector of state noise.

The system of difference equations (6) is specified on
the assumption that the temporal and spatial correlation
functions of the sought weather parameter & on the
mesoscale can be approximated (with a small error) by
the exponential equations:

pe(t) = exp (—ar); 7
ue(p) = exp (—Bp), (8)

here o =1/t is the coefficient inversely proportional to
the length of temporal correlation t5; B=1/py is the
coefficient inversely proportional to length of spatial
correlation pg.

Besides, the specific property of the mesoscale
allows us to apply the splitting method and to estimate
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(predict) the weather parameters at a fixed altitude
level ignoring relations between neighboring levels.
Thus, for each altitude range, its own Kalman filter
should be used, and each filter processes measurements
obtained for the given altitude level at all aerological
stations of a specified mesoscale territory. The set of
these measurements obtained synchronously at the time
point %k is described by the following system of
equations of observations :

Y (R) = X (R) + &4 (k);
Yy (k) = X5 (k) +e5(k);

Y (k) = Xt (k) + €n1 (),

9

where Y;(k) = £;(k) — E(k) is the centered value of the
field at the ith point (here E;(k) and E(kR) are
respectively the value of the weather parameter
measured at the ith point and that averaged over the
studied territory at the level % at the time k), and g;(k)
is the measurement error (i = 1, 2,..., n—1).

Equations (6) and (9) and the apparatus of
Kalman filtering were used for synthesizing the
algorithm of estimating the state vector X(k+1) (for
details see Refs. 9 and 10).

The operation of the combined estimation
algorithm is generally described in introduction. It
should be emphasized that its development involved the
main advantages of the methods considered above. As
was noted earlier, the problem of spatial prediction is
solved in two stages. At the first stage, the Kalman
filtering method was used for measurements obtained at
all (n — 1) aerological stations to predict the centered
value of the weather parameter in the horizontal plane
to the point with the given coordinates (x,, y,) at the
surface level. At the second stage, the MGMDH based
on the best model for the point ¢ (nearest to the
prediction point) and the prognostic value of the
weather parameter at the surface level (obtained at the
first stage) is used to reconstruct the whole altitude
profile. Reconstruction is completed by adding the
territorially average value £(k) at the same level & to
the obtained centered values of the weather parameter.

It should be noted that for correct operation of the
MGMDH, the number of measurements (the number of
measured altitude profiles) should exceed the number
of altitude levels.6 Therefore, as long as K < h + 1,
spatial prediction is performed using the Kalman filters
realized for each altitude level. Then, at K > 2 + 1, the
combined algorithm described above is used.

The block diagram of the estimation algorithm is
shown in Fig. 1. Consider operation of its component
blocks.

Block 1 provides for input of the data about the
number of stations 7 —1 conducting aerological
measurements, the needed number of vertical profiles
(i.e., the number of measurements) K, and the number
of altitude levels &, as well as specifies the coordinates
of the prediction point (or points) (x,, y,).
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1. Specifying the numbers of stations n — 1, profiles K, and levels £,
as well as coordinates of prediction point(s)

2. Specifying coordinates of stations (x;, y;), date and term of prediction,
and the number of measured profiles K

K<h+1

/K K>h+1
3

A
4. Input of the array of the surface
temperature T, average
temperature <7>, surface and
average zonal (Uj, <U>) and
meridional (Vy, <V>) wind at the
ith points, at which measurements
were conducted, as well as
calculation of the territorially
average values

DO O

A
8. Calculation of the distances Ar
from the given prediction point
to the ith measurement points

\
9. Calculation of deviations of

measured Ty, <T>, Uy, <U>, V,
<V> from their average values

A\ 4

|10. Determination of i = i+1 |

O @

11. Calculation of the sought values

of Ty, <T>, Uy, <U>, V, <V>
using Kalman filtering and
territorially average values

\
12. Determination of the number
of the altitude level &= h+1

o L@

13. Determination of the number of
the needed prediction point n = n +1

\
|14_ Output of prediction results |

<T>, <U>, <V>

N S !

15. Input of the array of the surface temperature T, average
temperature <T>, surface and average zonal (Uy, <U>) and
meridional (Vj, <V>) wind at the ith points, where measurements
were conducted, as well as calculation of territorially average values

G O D

18. Calculation of the distances Ar from the given prediction point
to the ith points, for which there were surface measurements

v

19. Calculation of deviations of measured Ty, Ugy, V)

from the average values

v

|20. Determination of i = i+1
21. Calculation of sought values of Ty, Uy, V by Kalman filtering

Y

22. Determination of the number of the needed prediction point n =n + 1

Go—y  ——CD

|23 Output of prediction results
+ To, Ug, Vy
24. Formation of the array of initial data based on the results
L | of spatial prediction (by the Kalman filtering method) of surface

To, Uy, Vy and layer-average <T>, <U>, <V> for the station nearest
to the prediction point

Y

25. Division of the sample of spatiotemporal observations {£(/, k = K)}
into subsamples @y (at k < K — 1) and ay (k = K)

Y

26. Learning-selection (by the subsample ay) of the best model
structures by the criterion of the final prediction error (FRE)
and minimax estimation of its parameters

Y

27.  Check-selection of the best structure of the prognostic model
from the obtained K + & best model structures

v

28. Adaptation-recalculation of parameters of the best structure
of the prognostic model by the whole sample a1 + @, using
the minimax estimation method

'

29. Prediction-reconstruction of <7> (K+1), <U>(K+1),
<V>(K+1) with the best prognostic model
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Calculation of sought value of <T>(K+1), <U>(K+1),

<V>(K+1)

v

Output of prediction results <T>(K+1), <U>(K+1),

<V>(K+1)

GO
: 30.

false

true
false

DTS

true
false

true

Fig. 1. Block diagram of spatial prediction by the technique combining the Kalman filtering and MGMDH.

Block 2 provides for specifying rectangular
coordinates of the stations (x;, y;) conducting
measurements  (if they are lacking, rectangular

coordinates are obtained from the geographical ones),
date and term of prediction, as well as the number of
measured altitude profiles K.

Block 3 checks fulfillment of the condition
K <h+1 (fulfillment of K =h + 1 permits operation
of the MGMDH algorithm in combination with the
Kalman filter).

If K<h+1, then only the Kalman filtering
procedure is performed for prediction of both surface
values of temperature T, zonal U, and meridional V
wind and the layer-average values <T>j ;, <U>p 1,
and <V>, . (hereinafter for simplicity the index A, %
of <e> is omitted).

Block 4 provides for the input of the array
including the data on the surface (T() and average
(<T>},, 1) temperature, surface and average zonal (U,
<U>y, 1) and meridional (V, <V>, ;) wind at the ith
points, where measurements were conducted, as well as
calculation of average over the territory values (£) and
standard deviations (o) for the mesometeorological
territory chosen.

Blocks 5, 6, and 7 provide for the organization of
cycles for the given prediction points n < J, altitude
levels (layers) & < K, and stations i <n — 1.

Block 8 calculates the distances Ar,; from the given
prediction point n to the points, at which the weather
parameters T, U, V, and <T>, <U>, and <V> were
measured, through the following equation:

Ary; =N G = 1)+ (yi =y’ (10)

Block 9 calculates deviations of the measured
values of Ty, U, V and <T>, <U>, <V> from the
norm (territorially mean), that is, performs calculations
by Eq. (11).

Block 10 provides for repetition of calculation
cycles for the used stations i = i+1.

Block 11 calculates the sought values of T, <T>,
Ug, <U> and V,, <V> at the point with the
coordinates (x,, y,) using the Kalman filtering
algorithm and territorially average norms by the
equation

E,=E+E,, (1)

where %]- is an estimate (prediction) of the centered
value of a weather parameter.

Block 12 determines the number of the altitude
level h=h + 1.

Block 13 determines the number of the needed
prediction point n =n + 1.

Block 14 outputs the results of spatial prediction
(sought values of Ty, <T>, Uy, <U>, V, <V>).

Block 15 provides, at K=h+1, i.e., under
conditions of operation of the MGMDH algorithm,
input of the array of initial data on the surface and
layer-average temperature (T, <T>), surface and
layer-average zonal (Ugy, <U>) and meridional (V,
<V>) wind at the ith point, as well as calculation of
territorially average values (norms) ¢ and standard
deviations o for the mesoscale territory chosen.

Blocks 16—20 correspond to blocks 5—10, but only
applied to calculation of the surface values of Ty, Uy, V.

Block 21 provides for calculation of the sought
values of centered fields of the surface temperature T,
surface zonal Uy and meridional V{ wind at the point
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with the coordinates x,, y, by means of the Kalman
filtering.

Block 22 provides for determination of the order
number of prediction point n = n + 1 needed.

Block 23 provides for output of the results of
spatial prediction of the centered values of temperature,
zonal and meridional wind (T, Uy, V) by the Kalman
filtering method.

Block 24 provides for sampling spatiotemporal
observations based on the results of spatial prediction
of the surface temperature (Ty), surface zonal (Ug) and
meridional (V) wind by the Kalman filtering method,
as well as the array of the data on the mean
temperature <T>, mean zonal <U> and meridional
<V> wind for the previous (with respect to prediction)
terms for the nearest (to the sought prediction point x,,,
¥, ith point (station).

Block 25 divides the sample of spatiotemporal
observations {£(h, k = K)} into two subsamples: a; (at
k<K -1)and ay (at k = K).

Block 26 provides for learning-selection (by the
subsample ay) of the best prognostic MGMDH models
by the criterion of final prediction error (FRE) and
using the minimax estimation of its parameters.

Block 27 provides (by the subsample a;) check-
selection of the best structure of the prognostic
MGMDH model.

Block 28 provides for adaptation-recalculation of
parameters of the best structure of the prognostic model
for the whole sample @y + a5 by the minimax estimation
method.

Block 29  is  responsible  for  prediction-
reconstruction, by the best prognostic MGMDH model,
of the wvalues of <T>(K + 1), <U>(K + 1), and
<V>(K + 1) at the point (x,, y,,).

Block 30 is responsible for calculation of the
sought profile of the given weather parameter,
including the values of the surface (T,) and average
temperature <T>, surface and average zonal U,, <U>
and meridional V, <V> wind, for the point with the
coordinates (x,, y,) by the equation

1c'_,(h”‘ <h<hp,y K+ 1)25(}1* <h£hmax) +

+E* < h < By, K+ 1) (12)

(here E(h* < h < hy,y) is the mean profile of layer-average
values of the weather parameter; E(2* < h < hyay, K+ 1) is
the profile of random deviations for the same weather
parameter calculated by the best prognostic MGMDH
model for the time k = K + 1).

Block 31 provides for output of predicted values of
<I>(K +1), <U>(K + 1), and <V>(K + 1).

2. Estimation of the accuracy of the
algorithm of spatial prediction

To estimate the performance of the combined
algorithm at its use in the problem of spatial prediction
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of mesoscale temperature and wind fields, we used five-
year two-term (0 am and 12 am GMT) observations of
five aerological stations: Warsaw (52°11'N, 20°58'E),
Kaunas (54°53'N, 23°53'E), Brest (52°07'N, 23°41'E),
Minsk (53°11'N, 27°32'E) and Lvov (49°49'N, 23°57'E)
which form a typical mesometeorological territory. The
Warsaw station spaced by 185 km from the nearest
Brest station, for which aerological observations are
available, was taken as a control station, for which
spatial prediction was performed.

Since we consider spatial prediction as applied to
estimation of the spread of a pollution cloud, according
to Ref. 11, we did not took the direct measurements of
temperature and wind at some atmospheric levels, but
their layer-average values determined by the equation

h
1
< >/zo,h= M]ljg(z)dz ) (13)
0

where <e> denotes vertical averaging over an
atmospheric layer AH = h — hy (here & and hg are the
altitudes of the layer top and bottom, and &
corresponds to the ground level); & is the value of the
weather parameter.

Figure 2 depicts the results of extrapolation of
the field of the layer-average temperature and zonal
and meridional components of the wind velocity. The
dependences are plotted for the combined algorithm
and the optimal extrapolation method. It follows
from the plots that the combined algorithm provides
the gain in accuracy in comparison with the optimal
extrapolation method. Thus, for example, regardless
of the season, atmospheric layer, and the weather
parameter, the rms errors of the spatial prediction &
are 1.3—-1.8 times lower than those for the optimal
extrapolation method.

Besides, it should be noted that the proposed
combined dynamic-stochastic algorithm has other
remarkable advantages over the method of optimal
extrapolation, namely:

— spatial prediction of the fields of weather
parameters on the mesoscale is performed in real time
(as soon as the observation data are coming), that is,
without invoking archived information;

— in the gap between the time of income of actual
measurement data (that is, at the intervals shorter than
the interval between synoptic terms), it is possible to
perform spatial prediction due to solution of difference
(differential) of the equations of state with smaller
discretization step;

— the combined algorithm allows adaptation to
unknown parameters of the dynamic model (for
example, to the preset intervals of spatial and temporal
correlation).

All the above-said allows us to conclude that the
algorithm combining the Kalman filtering with
MGMDH is quite efficient and can be successfully used
in the problems of estimating the spatial spreading of
pollutants over local territories.
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Fig. 2. Altitude dependence of rms errors of extrapolation of the layer-average values of temperature, zonal and meridional wind
velocity components to the distance of 185 km as estimated by the combined algorithm (7) and the optimal extrapolation method

(2), as well as the corresponding standard deviations (3).
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