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The transfer of solar radiation on a global scale in the Earth’s atmosphere is studied. We discuss
pioneering domestic and foreign works on the mathematical simulation of terrestrial radiation field and
on the methods of numerical solution of general boundary-value problem of the radiative transfer theory
for a spherical shell with a reflecting underlying surface. The optical transfer operator of the spherical
atmosphere—Earth system is constructed. Models of the forcing functions for the spherical problem of

transfer theory are formulated.

The space-based studies make up an area in the
basic and applied research whose development, and
even origin, could not have been possible without
computers. The space exploration has served a
significant factor in computer development and
creation of new research areas associated with
mathematical modeling of terrestrial radiation field,
image transfer theory, vision theory, theory of image
processing and pattern recognition, etc. The
information-mathematical software is inseparable part
of any project on the space-based research.

Theoretical and numerical simulation studies at
the stages of design and implementation of the first
satellite devices and, in particular, systems of their
navigation, positioning, and stabilization, as well as
in the first satellite optical experiments, were
performed Dby three leading research teams in
(mathematical) modeling of radiative transfer in
natural environments using computer. The Leningrad
State University and Main Geophysical Observatory
shared a few research groups headed by V.V. Sobolev
and K.Ya. Kondratyev. V.V. Sobolev, I.N. Minin, and
O.1. Smoktii developed first combined plane-spherical
model of the Earth’s atmosphere in the Sobolev’s
approximation.' 8 At the Computer Center of Siberian
Branch of the USSR Academy of Sciences,
G.I. Marchuk and G.A. Mikhailov have developed
first Monte Carlo algorithms for the model of
spherical Earth.”™"! The efficiency of these algorithms
owes a lot to the mathematical methods of adjoint
equations, suggested by Marchuk'>!® and developed
by  Mikhailov, Nazaraliev,  Antyufeev, and
Darbinyan.'* T.A. Sushkevich, from the Institute
of Applied Mathematics of the USSR Academy of
Sciences, first realized the global spherical model of
radiation field in the atmosphere—Earth system
(AES) on a global scale using iteration method of
characteristics.?! %% The approximate approaches were
proposed by Avaste,?”?® whereas Sobolev method was
developed further on by Titarchuk.?® The formulation
of problems and discussion of the results obtained
were performed jointly with T.A. Germogenova,
M.V. Maslennikov, A.M. Obukhov, M.S. Malkevich,
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G.V. Rozenberg, A.B. Sandomirskii,
E.O. Fedorova, V.P. Kozlov, V.N. Segeevich,
I.1. Koksharov, Ch.Y. Villman, O.A. Avaste,
V.E. Plyuta, G.M. Grechko, among others.

Abroad (in the USA), the solution of spherical
problem was first attempted by Lenoble and Sekera,*
who used the method of successive approximations,
corresponding to expansion of solution in a series
over small parameter, with solution of plane problem
taken as the first approximation, and with the ratio
of the effective height of homogeneous atmosphere to
Earth radius assumed as a smallness parameter. Most
foreign scientists utilize Monte Carlo method® ™ or
approximate numerical methods.>**® The method of
invariant immersion still remains purely theoretical
technique, without implementation into practice.”~*!

The approaches Dbased on analysis of
characteristics in curvilinear coordinates and different
methods of acceleration of convergence of iterative
solutions in subregions allow one to proceed to
numerical solution of 3-D inhomogeneous spherical
problem, which simulates near-real terrestrial
conditions.®>% Such a formulation of the problem is
important in the context of problems of atmospheric
(tropospheric and ozonospheric) radiative photochemistry
under conditions of twilight, dawn, terminator, and
polar regions, information support (such as that
provided Dby refractometric methods and satellite
systems operated in observations along horizontal
paths) of atmospheric tomography of the Earth, remote
sensing of polar regions, development of models of
the Earth’s spectral-radiation balance and phase
brightness of Earth for space navigation instruments
(spacecraft returning back to the Earth, spacecraft
navigation using Earth attitude), implementation of
projects on additional energy supply on spacecraft
associated with the use of Earth-reflected solar
radiation, etc.

New potentialities of the mathematical simulation
of global-scale atmospheric radiation of Earth are
associated with mathematical software developments
for a wide range of applications on massive parallel
supercomputer systems. The availability of such
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facilities makes it possible to perform benchmark
computations, numerical simulation experiments,
simulation modeling, verification of approximate methods
and fast algorithms for mass solution of research and
applied problems, as well as to refine the radiation
codes for models of circulation, forecast, climate,
photochemical kinetics, dynamics of ozonosphere,
cross-boundary transport of air pollutants, etc.

Mathematical formulation
of the problem

We shall consider below the optical (solar and
terrestrial) radiative transfer in the Earth—atmosphere
system (EAS) in the approximation of spherically
symmetric shell, illuminated by an external parallel
flux with the intensity =S;. To account for the
contribution of spatially inhomogeneous underlying
surface (earth’s surface, cloud top boundary, or
hydrometeors) to the spherical EAS emission, we shall
construct the transfer operator in the framework of
linear-systematic approach, developed for plane EAS
model.” The forcing function (FF) of the boundary-
value problem of the radiative transfer theory, being
the kernel of the optical transfer operator (OTO), is
considered a universal quantity, invariant with respect
to specific inhomogeneities of the reflecting and
emitting boundary.

The OZ-axis is assumed to pass through the
Earth’s center along the direction opposite to
extraterrestrial parallel radiative flux. The Earth and
the atmosphere illumination by the Sun is symmetrical
about OZ-axis. Overall, the EAS is considered as a
three-dimensional system in the spherical coordinate
system: the position vector r of any point A(r) in the
atmosphere and on the underlying surface is totally
defined by the distance » =|r| from the Earth’s center
and polar y and azimuth n angles; that is, the three
parameters (7, y, ), namely radius, latitude 0 <y < 7,
and longitude 0<m<2n correspond to each vector
valuer.

The direction of a light beam propagation s (with
s assumed to be a unit vector) at the point A(r) is
described in a local spherical coordinate system with
the origin at the point A(r): =zenith angle
9 = arccos(r-s)/|r| measured from r, and azimuth ¢
in the plane tangential to the sphere of radius » and
passing through the point A(r), i.e., each s is described
by the pair (9, ¢). The direction ¢ = 0 is assumed to
coincide with the azimuth of the incident
extraterrestrial flux. We introduce the notation
pn = cos9. Consider a cone about OZ-axis with the
center at the Earth’s center and with the opening angle
of 2y. At the point A(r), located at the cone side
surface, the directions of s out of the cone will be
assumed to lie in the range of azimuth angles
0 < ¢ < /2, while those into the cone in the range —
n/2 < ¢ <n. The rays s with azimuth ¢ = n/2 will
lie in the planes tangential to the side surfaces of
these cones; while to azimuths ¢ = 0 and ¢ = = there
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will correspond a single coordinate plane passing
through the OZ-axis and position vector r.

The studied spherical shell is bounded by spherical
surfaces with radii R}, at the shell bottom and R; at
shell top. The set of all points A(r) of the spherical
shell constitutes an open region G with the bottom
Gy, and top G boundaries being spherical surfaces with
the radii R, and Ry, respectively. The vector field of
all directions of light beams s(A) at each point A(r) is
a unit sphere, namely the set Q = Q"L Q~, where Q"
and Q are the sets (hemispheres) of s directions with
pel0, 1] and p € [—1, 0], corresponding to up and
down going radiative fluxes, respectively. In the
studied problem, the phase volume is

Tt = [GU G, U Gl Q=
={r,s):re[GuG,uUGl s e}

For the convenience in writing the boundary
conditions, we introduce the sets (phase regions)

b=G, Q" ={(r,s):r=r,e€ G,, s € Q'},
t=GQ ={r,s):r=r,e€ G,seQ},

where the parameters b and ¢, for clarity, are chosen
to correspond to “bottom” and “top”.

Our purpose is to determine the intensity of
attenuated direct radiation from sources and stationary
intensity field of singly and multiply scattered radiation
inside or outside the scattering, absorbing, and
emitting spherical shell G with the boundaries G; and
Gy,. The approximation of stationary field is physically
correct because the propagation of light is studied.

The total intensity of monochromatic (at a fixed A)
or quasi-monochromatic (at fixed A and AL) stationary
radiation ®,(r, s), where index A indicates the
wavelength (omitted in discussion below), at the point
A(r) with the position vector r along the direction s
is determined as a solution of the general boundary-
value problem (GBVP) of the transfer theory

K® = F" @|, = F', ®|, = eRF + F" (1)

in the phase region I' with linear operators: the transfer
operator
D = (s, grad) + oi(r),

for 3-D spherical geometry of the problem®

(5, VD) = cosSaE+ sin8cosp o0  sin § oD
or 7 5\11 7 29

+sinSsin(pai()_ sin §sin @ coty 00

)

rsiny on 7 op
collision integral — source function
B(r,s) = S® = oy (1) Iy(r,s,s’) O(r,s’)ds,
Q
ds’ = sin 9'd8'd¢’;

the integro-differential operator K =D —.S; the
reflection operator R is, in the general case, described
by the integral equation
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[RD](ry,s) = J.q(rb,s,s’) CD(rb,s’)ds’, se Q.
o
The total aerosol-molecular scattering phase
function has the normalization condition

1
s IY(r,S,S') ds' = 1 Iy(r,cosx) dcosy =1;
4TEQ 2 4

oi(r) and o, (r) are the spatial distributions of the
total cross section of interaction (extinction) between
optical radiation and substance filling the region G
and of the total aerosol plus molecular scattering
coefficient; the scattering angle y is determined from
the formula

cosy = cos(s - s') = cos9cosY’ + sin9sin9’ cos(p — ¢'),

if s=1(9, ¢), s’ =(9', ¢'). The function F(r, s) is the
density of radiation sources located within the region
G; F'ry, s7) and Fi(r,, s") are the radiation sources
at the boundaries of the spherical shell, determined
for beams s directed into the region G.

The operator R describes the law of reflection of
radiation from the underlying surface located at the
level of bottom boundary Gy,; the parameter 0 < ¢ < 1
characterizes the type of interaction of radiation with
the underlying surface. When R = 0 (or when & = 0),
we deal with the first boundary-value problem
(FBVP) of the transfer theory

K®y = F", &, = F', |, = F” 2)

for a spherical shell with transparent, nonreflecting,
absolutely black Dboundaries, or with the problem
having “vacuum” boundary conditions.

The scalar function with the vector arguments
@(r, s) = D(A, s(A)) = d(r, v, n, 9, ¢) is determined as
a solution of GBVP (1) or FBVP (2) in the phase
region

r=GQ+G Q" +G, O, Iy =T utub.

The boundary-value problem for the stationary
transfer equation is solved by the successive orders of
scattering (SOS) method, using simple iterations in
different orders of collision or modified iterations with
inclusion of accelerating procedures and subregions,
representing different media (atmosphere, ocean,
clouds).

General boundary-value problem (1) is linear
(with respect to sources), and its solution can be
sought in the form of superposition (arguments (r, s)
omitted) ® =@, + ®,. The background radiation @, is
determined as a solution of FBVP (2) and may
consist of up to three background components:
Oy = (D(r) + @8 + @y, each of which can be calculated
separately as a solution of FBVP with the sources F',
F’, and F™ respectively. The determination of
background @, due to reflection from the underlying
surface is the following GBVP

Ko, =0, ®/; = 0, Oy, = eRD, + €E, (3)
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where the insolation source is surface illumination
(brightness, irradiance) due to background radiation:
E(I‘b, S+) = R(D().

Forcing functions of spherical
boundary-value problem
of the transfer theory
By analogy with the plane EAS,* we introduce

the “horizontal” coordinates 7, =(y,m) e Q, dr, =
= sinydydn. Let us consider the FBVP

Ko =0, o, =0, o, = s"; ., s). (4)

The parameter s” € Q" may not be displayed. The
problem (4) refers to the linear EAS, and its
generalized solution is presented by a linear functional,
the integral of superposition

o(s";7,7,,8) = F () = (©,f) = 2i J‘dsz *
Y
Q+
><4i J®(SZ;7, ri—ri,s) f(s"r),s)) siny'dy'dy, (5)
T
Q

whose kernel is FF G)(s;; r, r1, s), being the solution
of the FBVP

K©=0,0|=0 0=/ (6)

. + +
with the parameter s, € Q" and source f5(sy; 71, s) =

=58(r,) 8(s — s;). In effect, FF ® describes the radiation
field in the layer with nonreflecting boundaries, formed
due to processes of multiple scattering of stationary
beam with the direction sz, whose source is on the
boundary G, at the point with y = 0.

If the source f(r,) is isotropic and horizontally
nonuniform, then the solution of FBVP (4) is sought in
the form of the linear functional, namely, convolution
integral

@@, 7 ,8) =F (f)=(O,[f) =
-l j@c(r, r. —11,8) [(r)siny'dy'dy’ €]
47 3

with the kernel

0.(r,r.,s) = 2i J@(s};;r, r1,8)dsj . (8)
T
Q+

The FF ©, coincides with the point-spread function
and satisfies FBVP with an axial symmetry

KO, =0, 0 = 0, 0, = 8(r.)f;. ©)

In the case of anisotropic and horizontally
homogeneous source f(s"; s), the solution of FBVP (4)
is determined through the linear functional

o(s";7,8) = F,(f) = (©,,/) =

= i I@,(s};;r,s) f(sh;s};)ds}; (10)
Q+
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with the kernel

0,(s);7,8) = ﬁ I@(s};;r, r.,s)sinydydn . (11)
Q

The FF 0, is the solution of 1-D spherical FBVP
with the dependence on azimuth

K©,=0,0/ =0 0=0s—s,). (12

In the case of isotropic and horizontally
homogeneous source, the solution of FBVP (4)

F(r, s) = fW(r, s), [ = const, 13)
is calculated through the FF

W(r,s) = 1 J‘dsz 1 J@(sz;r, 7.,s)sin ydydn =
2n 4n 3
Q+

b J@C(r, 71,8)sin ydydn = 1 J@r(sz;r, s) dsj,,
4n 3 2n
Q+

(14)

also called the transmission function burdened by
multiple scattering contribution, and determined as a
solution of the 1-D spherical FVBP

K,W=0, Wl,=0, W|, = 1. (15)

Formulas (8), (11), and (14) can be used for
benchmark calculations of FF ®, ®,, and ©, through
solution of simpler FBVP (9), (12), and (15). The
functionals (8), (11), and (14) are particular cases of
the functional (5). The forcing functions ©, ®,, ®,, W
are solutions of FBVP (6), (9), (12), and (15),
respectively, and represent the full set of base models
of forcing functions of the first and general boundary-
value problems of the radiative transfer problem in a
spherical shell and invariant characteristics of the
linear EAS.

Optical transfer operator

Based on the regular perturbation theory and
using the series

0

@, (sh;r,s) = Z stJk,

k=1

GBVP (3) reduces to the system of recurrent FBVP
of the type (4)

Ko, = 0, &y, = 0, @, = Ep. (16)

with the sources E, = R®;,_; for k>2, E{=E. We
introduce an operation describing a single interaction
of radiation with the boundary in terms of FF @:

[Gf](sh;rb,s) = R(©,[) = J.q(rb,s, s7) (©,/)ds".
i

The solutions of FVBP system (16) are sought as
linear functionals (5):

q)1 = (@, E‘)y ch = (G), R®k71) — (@, GI€71E).
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Asymptotically exact solution of GBVP (3) is
obtained in the form of the linear functional (5),
representing optical transfer operator

®, = (0, V), (17)

where the “scenario” of the optical image or the
brightness of underlying surface

Y = inE - ichk
k=0 k=0

is the sum of the Neumann series in orders of surface
reflection taking into account multiple scattering in
the medium.

The “scenario” satisfies the Fredholm integral
equation of the second kind

Y=R(®, Y)+E,

which is called the equation of “near-ground
photography.” In the general case, R(®, Y)
#(R 0O, Y). The total EAS radiation and “satellite
photography” are described by the functional

=+ (O, V).

The FF @(SZ; r, 71, s) is used to solve GBVP (3)
with the following set of pairs of source function and
reflection characteristic:

E(ry, s), q(rp, s, 8'); E(ry, 8), q(s, 8"); E(s), q(ry, s, 8');
E(ry), q(ry, s, 8"); E(rp), q(s, s); E, q(ry, s, s').

The FF O©/r, r,, s) is the kernel of functionals,
when source and reflection parameter form the
following pairs:

E(ry, 8), q(ry, 8'); E(ry, 8), q(s); E(s), q(ry, ');
E(ry), g(ry, 8"); E(rp), q(s); E, q(ry, s").

With the help of FF @,(s;; 7, s) we can
determine the functionals for the following sources’
and reflection parameters: E(s), (s, s'); E, ¢(s, s').
The FF W(r, s) is used to determine the solution for
the pair E, ¢g(s').

Conclusion

Summarizing, we can state that the initial
GBVP (3) is reduced to the linear functional (17),
and a linear-systematic approach to solving remote
sensing problems and accounting for the contribution
of reflecting and emitting spherical surface of the
Earth has been formulated. Also, we clearly
determined how nonlinear effects due to multiple re-
reflections from surface influence the type of scenario;
these effects are described by the linear transfer
characteristics of isolated atmospheric layer. It is
noteworthy, that the FF characteristics are efficiently
calculated by the Monte Carlo method.

The representative reports and discussions on the
results of solution of spherical problems have first
taken place at the First Summer School on the Optics
of Scattering Media (Minsk—Svityaz, June 1969), at
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the All-Union Conference on Light Scattering in the
Atmosphere (Alma-Ata, November 1969), and at the
Eighth Scientific Conference on Atmospheric Optics
and Actinometry (Tomsk—Novosibirsk, June 1970).

In recent decade, there has Dbeen shown an
increased interest in the study and development on the
basis of multidimensional spherical models, a tendency
well reflected in scientific programs and reports of
International Radiation Symposium (IRS-2000), held
on July 24—29, 2000 in Saint Petersburg; also, a new
area of satellite studies, namely satellite monitoring
of the Earth,*° has evolved.
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