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The lidar equation obtained earlier for the inhomogeneous atmosphere with regard for single 
and double scattering is under analysis. It is shown that double scattered forward–backward and 
backward–backward photon trajectories equally contribute to the backscattering signal intensity. 
This significantly simplifies the lidar equation providing the sounding pulse penetrates into the cloud 
to the depth that is small as compared to the scattering volume diameter at the cloud top. It is 
shown that the double scattered lidar return is more sensitive to aerosol microstructure than the 
single scattered one. A lidar with a changeable field of view is described allowing one to separate the 
multiple scattering component in the total lidar return. The technique for estimating the multiply 
scattered lidar return is based on the hypothesis about normal distribution of multiply scattering 
intensity in the image plane of the scattering volume at a given distance. The results of experimental 
investigation of the structure of the lidar return multiply scattered by a droplet cloud are discussed. 

 

Introduction 
 

High sensitivity of lidars at detection of minor 
aerosol admixtures in the atmosphere, long range, 
and short time needed to get the data favor their use 
in studying the dynamics of evolution and spread of 
cloud formations, as well as temporal transformation 
of microphysical aerosol characteristics. 

Nowadays the data of lidar experiments are 
interpreted using the lidar equation (LE) obtained 
with regard for single scattering: 
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where P(1)(r) is the power of the single scattered 
backward radiation coming to the lidar receiving 
system from the distance r; P0 is the peak power of 
the pulse sent to the atmosphere; A is the area of the 
lidar receiving aperture; c is the speed of light in air; 
τp is the laser pulse duration; X(π, r) is the scattering 
phase function in the direction of 180° with respect 
to the sensing radiation; σ(r) is the volume scattering 

coefficient at the distance r;

0

( ) ( )d

r

r z zτ = α∫  is the 

optical thickness at the path segment from 0 to r; 
α(z) is the volume extinction coefficient determined 
by the scattering σ(z) and absorption κ(z) 
coefficients:  
 α(z) = σ(z) + κ(z). 

At sensing atmospheric aerosols, the wavelength λ is 
selected in the spectral interval free of strong 
absorption lines of atmospheric gases. In this case, we 
can assume α(z) ≈ σ(z). 

Radiation propagation in dense scattering media 
is accompanied by multiple scattering (MS). MS is 

more sensitive to variations of the sensed medium 
microstructure as compared to single scattering and, 
thus, preferable for solution of the inverse problem. 

1–6  
In the case of sensing clouds, fogs, and dense hazes, 
the laser radiation is scattered many times before it 
comes to the lidar receiver, therefore it is necessary 
to take into consideration in the lidar signal the 
energy fluxes of all scattering multiplicities reaching 
the lidar receiving system: 

 P(r) = P(1)(r) + P(2)(r) + … + P(i)(r).  (2) 

The MS phenomena in aerosol media is properly 
described by the radiative transfer equation (RTE), 
which is not yet  generally solved. The Monte Carlo 
method and small-angle approximation are most 
widely used as approximate methods for the RTE 
solution. These methods give rather good results in 
solution of the direct problem, that is, when 
calculating backscattered signals. At the same time, 
it is difficult to interpret the data of laser sensing of 
aerosols, because it is impossible to analyze how the 
spatial structure of the backscattered signal and the 
intensities of different scattering multiplicities are 
connected with lidar parameters and optical 
characteristics of the medium. 

Investigation of regularities of lidar return 
formation through numerical RTE solution by the 
Monte Carlo method  shows that the first and the 
second multiplicity scattering mainly contributes to 
the reflected signal at laser sensing of dense aerosol 
formations with τ ≤ 3 (Ref. 7). The technical 
capabilities of relatively simple modern lidars allow 
receiving return signals from the distances not 
exceeding the optical thickness τ ≈ 4. Thus, in many 
practically important cases the lidar signal can be 
described in the double scattering approximation 
with sufficient accuracy, and, based on this, the 
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inverse problem of aerosol microstructure 
determination can be solved. 

6 Below we consider in 
detail how a double scattered lidar return is formed 
in a medium to demonstrate, in the first turn, that 
the obtained equations for P(2)(r) are no less rigorous 
than the LE in the form (1). 

 

1. Double scattered lidar return  
 

Consider how a flux of double scattered 
radiation is formed on the input aperture À of the 
receiving system of a monostatic lidar (Fig. 1). 

The radiation from the source positioned at the 
point Î is directed along the axis Z of the sensing 
path. The directional pattern of radiation emitted by 
the source is determined by the linear angle 2θp, and 
that of the field of view is determined by 2θ0; and 
θp < θ0 << 1. Assume that the optical axes of the 
transmitting and receiving antennae coincide, which 
is characteristic of monostatic coaxial lidars. The 
laser pulse can be represented as P0(t) = P0f(t), 
where f(t) is the function describing the pulse shape. 
 Let the source at the time t0 = 0 emit a pulse 
along the axis Z. Then for any t > 0 the signal 
reflected by the medium from the distance r = ct/2 
can be represented as a sum of single and multiply 
scattered fluxes.  The double scattered flux P(2)(r)  is 
a sum of elementary fluxes dP(2), which arise at 
successive interaction of radiation with pairs of 
elementary medium volumes dV1 and dV2. The 
volume dV1 is located on the axis of the sensing 
beam at the point Î1, while dV2 is located at the 
point Ì(z) (0 ≤ z ≤ r) lying on the arc RN of an 
ellipse with the focal points Î and Î1(z). 

To find the entire return signal caused by the 
double scattered radiation, we have to sum up dP(2) 
all over the volume of the scattering medium 
bounded by a conical surface with the vertex angle 
2θ0 and the sphere of the radius OR = r (the cone 
vertex and the center of the sphere are at the point 
Î). It should be also taken into account that at the 
time t = 2r/c the double scattered radiation comes to 
the receiver only from those pairs of dV1 and dV2, 
whose coordinates meet the equation  

 l1 + l + z = 2r,  (3) 

where l1 is the distance from the point Î to the 
volume dV2, l is the separation between the volumes 
dV1 and dV2. 

At the fixed position of the point Î and the 
given sensing range r, Eq. (3) is true, if the points 
Ì(z), R, and N are on the surface of an ellipsoid of 
rotation around the axis OZ with the focuses at the 
points O and O1(z). The ellipsoid crossing by the 
plane passing through the axis OZ gives the ellipse 
equation, having the following form in the polar 
coordinates:  

 l = r(r – z)/



r – z sin2

 

γ
2 ,  (4) 

where γ is the polar angle measured in the 
counterclockwise direction from the positive direction 
of the axis OZ. 

Write the equation for the elementary double 
scattered signal dP(2) caused by scattering, first, at 
the point Î1 lying on the axis of the sensing beam 
and then at the point Ì(z) belonging to the ellipsoid 
surface. It has the following form: 
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where 

T(z, l, l1) = T(z)T(l)T(l1) = exp {–[τ(z) + τ(l) + τ(l1)]} 

is the medium transmittance on the path; 

 OO1 + O1M + MO = 2r,  

ànd τ(z, l, l1) is the optical thickness at the 
corresponding path segments. Since θ0 << 1, it can be 
believed that the extinction α and scattering σ 
coefficients, as well as the scattering phase function 
X(γ) depend only on the coordinate z. Then in 
Eq. (5) we can set 

 ( ) ( ) ( )1

0

, , exp 2 d exp 2 .

r

T z l l z z z

 
 ≈ − α = − τ   
 
∫  

 

Fig. 1. Formation of the double scattered flux. 
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To find the total power of the double scattered 
radiation P(2)(r) coming to the lidar receiving system 
for the time from t to t + τp (simultaneously with the 
single scattered radiation), we should integrate 
Eq. (5) all over the volume Vz

 for any z and then 
calculate the integral over z. It should be taken into 
account that V

z depends on the position of the point 
Î1 on the axis Z, that is, the lower limit of 
integration over z. The volume Vz is formed by the 
conical surface with the vertex angle 2θ0 and two 
ellipsoids of rotation (around ÎÎ1) with the radius 
vectors l′ and l meeting the equations  

 l + l1 + z = 2r,   ( )1 2 ,l l z r r′ ′+ + = − ∆  

where  p

1

2
r c∆ = τ . 

Substituting the equation for dV2 = 
= l 

2sin γdγdψdl into Eq. (5) and taking into account 
that  
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we integrate Eq. (5) over the azimuth angle ψ from 0 
to 2π and then over time from t to t + τp. In the case  
of sensing by a short pulse τp << 2/cεmax (εmax is the 
maximum value of the extinction coefficient on the 
path under study), the time integral can be easily 
calculated for r >>  cτp. The power of the double 
scattered lidar return has the form 
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Here  
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Equation (6) for the lower limit of integration 
over z was obtained from the condition that at the 
point N the ellipse (4) intersects the straight line 
ÎN, whose equation in the polar coordinate system 
(pole at the point z) has the form  

 ll(γ) = z sin θ0 /[sin (γ – θ0)]. 

Equation (6) determines the double scattered 
lidar return from an arbitrarily stratified medium. It 
was derived practically within the framework of 
assumptions on the medium properties and lidar 

parameters that are commonly used at formulation of 
RTE (1) in the single scattering approximation. 
 When sensing clouds separated from the lidar by 
the distance H, scattering and extinction of optical 
radiation in a cloud σ(H ≤ z ≤ r) are usually large as 
compared to that in the undercloud haze layer at the 
sensing path segment 0 ≤ z ≤ H. Therefore, we can 
assume σ(0 ≤ z ≤ H) ≈ 0. In this case, the general 
equation for P(2)(r) has the form 

8: 
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It can be seen from Eq. (7) that the double 
scattered lidar return is formed in the cloud medium 
and depends on both the field of view of the lidar 
receiving antenna and on the depth of the pulse 
penetration into the cloud. 

 

2. Peculiarities of formation of double 

scattered lidar return from remote 

cloud formations  
 
In dense aerosol media (for example, natural 

low-level and middle-level clouds), the lidar signal 
power decreases fast as the laser radiation propagates 
deeper into the medium. When sensing such media, 
the depth of pulse penetration into a cloud is small 
as compared to the distance Í to the closest 
boundary of an aerosol formation: 

 
r – H

r
 ≈ 

r – H
H

 << 1.  (8) 

In this case, it is necessary to take into account 
that the scattering volume is bounded on the lidar 
side by a plane, which is determined by the cloud 
bottom boundary in the case of ground-based sensing 
and by the cloud top boundary in the case of airborne 
or spaceborne sensing. If the condition (8) is fulfilled 
and  

 0tan ,
2

r H H
θ− ≤   (9) 

then Eq. (7) can be significantly simplified. 

9 



714   Atmos. Oceanic Opt.  /September  2003/  Vol. 16,  No. 9 V.V. Bryukhanova et al. 
 

First of all, it should be noted that if  

 H ≤ z ≤ r and 
r – z

r
 << 1,  

then in Eq. (7)  

 2

1 1 tan .
2

r z
z r

r

− γ ≈ − 
 

 

Now we substitute in Eq. (7) 

 0( ) tan ,
2

r z H
θ ξ = −  

 
 

and then in the equation for I2(ξ, γ) change the 
variables  

 2
tan ; .

2
U

γ= ξ β = π −γ  

After these substitutions, the integrals in 
Eq. (7) for I1(ξ, γ) and I2(U, β) turn out to be 
identical. Therefore, Eq. (7) can be rewritten as  
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Here it is taken into account that  
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The contribution of the double scattering 
relative to single one is determined as  

 π ξ

θδ = = ×
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Optical characteristics of a homogeneous cloud 
can be presented as  
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Taking this into account, we obtain the 
following equations for the power P(2)(r) and relative 
contribution of double scattering as compared to 
single one δ21(r): 
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and 
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If the cloud layer is bounded by the heights H 
and H1 and the following condition is fulfilled:  
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2
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then at r > H1 the power of the single scattered 
signal is P(1)(r) = 0, and that of the double scattered 
signal is  
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For a homogeneous layer (σ = const), the 
following equation is valid:  
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where ∆H = H1 – H is the thickness of the cloud 
layer. 

It follows from Eq. (12) that the double 
scattered signal comes to the lidar receiver even at 
the moments t > 2H1/c, when the single scattered 
signal is zero (r > H1). Thus, the elongation of the 
lidar signal is explained by the multiple scattering 
(in this case, double scattering), and the signal tail is 
determined by the shape of the scattering phase 
function and the layer thickness. 

If r – H > H tan 

θ0

2  , then the cross size of the 

scattering volume for the second scattering 
multiplicity is determined by both the medium 
boundary and the field of view of the lidar receiving 
system.  

In this case, the general equation for the power 
of the lidar signal caused by double scattering has 
the form  

 [ ]− ττ
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Through the corresponding substitution we can 
show that Eq. (13) can be reduced to the form  
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where  
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For a homogeneous cloud at ξ0 > 1 the power of 
the backward scattered signal is  
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As can be seen from the equation obtained, at 

0
tan

2
r H H

θ− >  the double scattered return signal 

depends both on the depth of pulse propagation into 
the cloud and on the cross size of the scattering 
volume at the distance r.  

 

3. Dependence of the double scattered 
signal intensity on the scattering 

phase function shape  
 

Consider the simplest case: sensing of a 
homogeneous cloud. The scattering coefficient of such 
a cloud is independent of the depth and can be 
described by Eq. (10). In the case of sensing by a 

ground-based lidar, the depth of the pulse 
penetration is larger than the geometrical diameter at 
the input into the cloud. Let us use Eq. (13), and for 
a homogeneous plane-stratified cloud we obtain  
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Fig. 2. Dependence of the integral parameters G1 and G2 on 
the generalized parameter γ1 for Ñ1, Ñ2, and Ñ3 cloud 
models,10 the wavelength λ = 450 nm. 

 

The value of P(2)(r) depends on two components 
I1 and I2, which indirectly, through γ1, depend on the 
field of view θ0, the distance to the cloud Í, and the 
sensing depth (r – H). In addition, I1 significantly 
depends on the optical thickness of the sensed 
aerosol, and I2 increases proportionally to the field of 
view. At certain values of the lidar field of view and 
the depth of sensing of an aerosol cloud, I2 
contributes much more to the lidar signal than I1. As 
can be seen from Fig. 2, the integral parameters G1 
and G2 depend on the scattering phase function shape 
determined by the aerosol microstructure, and they 
vary most widely in the region of small values of the 
generalized parameter γ1. 
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Thus, the results presented give a methodical 
basis for separating the lidar signal’s portion formed 
due to double scattering from the total signal. This 
allows us to plan optimally the experiment, namely, 
to determine the fields of view of the lidar receiving 
system, as well as the optical thickness and the 
sensing depth, at which P(2)(r) is recorded most 
efficiently, depending on the distance to some aerosol 
formation. 

 

4. Lidar for measuring a multiply 
scattered signal  

 

A convenient tool for studying the multiply 
scattered component in a lidar signal is incoherent 
spatial filtering of the received radiation in the lidar 
receiving system. 

6,11,12 To investigate experimentally 
the possibility of such filtering, a specialized lidar 
was designed at the Institute of Optical Monitoring 
SB RAS. Its features are a low angular divergence of 
the sensing radiation and high quality (resolution) of 
the receiving objective, whose focal plane housed a 
spatial filter discretely changing the field of view of 
the receiving system. The filtering permits analyzing 
the illumination distribution in the image spot of the 
scattering volume at sensing  optically dense aerosol 
objects, when the received signal includes a multiply 
scattered component.  

The laser transmitter employed the second 
harmonic of the Nd:YAG laser (λ = 532 nm). The 
divergence of the sensing beam was decreased down 
to 0.8 mrad by an afocal optical system with the 

magnification Γ = 10×. Lenses with corrected 
spherical aberration were used as optical antennae in 
the transmitting and receiving systems. At the 
relative aperture of the receiving objective 1:5 and 
the focal length of the lens f = 750 mm, the diameter 
of the point image spot did not exceed 24 µm in the 
linear field of view with the diameter up to 16 mm. 
To improve the image in the near zone without 
significant loss in quality in the far zone and at 
infinity, we used a hyperfocal installation of the 
receiving objective relative to the plane of windows 
of the spatial filter f + (0.3–0.5) mm. 

We replaced the initially accepted coaxial 
arrangement of the transceiver by the biaxial one, 
which ensured a higher rigidity of the construction  

 

and stability of alignment of the optical axes of the 
transmitter and the receiving system (no more than 
0.1 mrad). At the same time, this decreased the 
energy loss and diffraction distortions of the signal at 
the input aperture. At the basic distance between the 
axes of the transmitter and the receiving system 
equal to 144 mm, the effect of parallax almost does 
not show itself starting from the distances z = 150–
200 m, that is, almost immediately beyond the limits 
of marked manifestation of the near-zone defocusing 
of the receiving system. A FEU-84-3 photomultiplier 
tube operating in the current mode was used as a 
photodetector in the lidar. The frequency band of the 
photodetector output circuit was 20 MHz. 

We used the simplest, in design, spatial filter of 
the integrating type: a round window with the 
discretely changing radius Ro (Fig. 3a). Other shapes 
of the window are possible as well, 

13 for example, 
when the ring radius Rk is varied discretely at the 
constant ring width ∆R or when the radius of an 
occluding circle Roccl is varied at the constant 
window radius Rmax (the differentiating and matched 
filters, Figs. 3b, c). 

The functional layout of the lidar is shown in 
Fig. 4. The filter is made as a turret disk 7, which is 
rotated by an electric motor 13 with the rate of 
3 rev/s, successively setting into the working 
position with the frequency of 24 Hz the round 
windows of 1, 2, 3, 4, 6, 8, 10, and 12 mm in 
diameter. The transmitter operation is synchronized 
by a photon-coupled pair 14, 15 and a series of 
specialized holes on the disk edge. To synchronize the 
process of grouping the digitized signals by the 
window size, the system includes an additional 
photon-coupled pair 14, 16 connected to a computer. 
It synchronizes the operation of signal recording 
devices with the beginning of every new window 
changing sequence (the time of placing the window 
of the minimal size into the working position). 
Signals are digitized and recorded by a 7-bit ADC; 
the digitizing frequency is 20 MHz. 

The fast and continuous window changing, 
grouping the ensembles of digitized signals 
corresponding to each of filter windows, and then 
calculating the family of averaged signals permit 
decreasing the contribution of dynamic variations of 
sensed objects to the result of lidar measurements. 

 
Rî

   

Rk 

 ∆R

   

 

Rmax 

Roccl 

 

 a  b c 

Fig. 3. Windows of spatial filters: integrating filter (a), differentiating filter (b), and matched filter (c). 
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Fig. 4. Lidar functional layout: laser 1; glass beam-splitting plate 2; sensor for starting ADC and processing devices 3; 
polarization filter 4; collimator 5; receiving objective 6; disk with spatial filtering windows 7; polarization filter 8; spectral 
filter 9; photodetector 10; ADC 11; IBM PC 12; electric motor 13; sensor transmitters 14; sensor for starting the laser 15;  
sensor for starting the data grouping process 16. 
 
Each family obtained consists of eight averaged lidar 
signals (corresponding to the number of filter 
windows). The number of window changing 
sequences (number of signal realizations in each 
ensemble) and the recording range (number of 
readouts in the range) are preset before the beginning 
of every lidar measurement. 

The image spot of the scattering volume 
projected in the focal plane of the receiving system of 
the lidar has an axial (central) symmetry starting 
already from the distance z > 200 m. The illumination 
(lidar signal power density) distribution in the image 
plane can be described by the function b(z, ρ), where 

ρ is the distance from the spot geometrical center 
(from the axis of the receiving system). The actual 
form of the function b(z, ρ) depends on the transceiver 
parameters and the sensed medium characteristics. 
The power of the radiation flux coming from the 
distance z and bounded by a round diaphragm of the 

radius R in the image plane is 

 ( ) ( )
0

, 2 , d .

R

P z R b z= π ρ ρ ρ∫   (14) 

The power of the averaged signals at every point 
of the range zj can be found by averaging the signal 
realizations at this point for ensembles corresponding 
to each of eight values of the radius Rk of the filter 
window (k = 1, 2, …, 8). Thus, we analyze some 
averaged distributions in ensembles (by the number 
of window changing sequences). 

In the experimental investigations,14 it was 
proposed to use the Gauss function to describe the 
spatial distribution of the power density of the lidar 

return signal caused by MS in artificial fogs and 
smokes at their irradiation by continuous-wave laser 
radiation. This suggests that  

 ( ) ( ) ( ) 2, exp{ [ ] }.b z b z a zρ = − ρ  (15) 

Such an approach allows us to reduce the 
further analysis of lidar signals to determination of  
the normal distribution parameters: the energy 
parameter b(z) – the power density at the center of 
the analyzed spot and the spatial parameter a(z) – 

the size of this spot. The values of these parameters 
are connected with the properties of the medium 
under sensing. Their dependences on the range z 
reflect, in the best way, the dynamics of variation of 
the scattering volume, i.e., the return signal source. 
Substituting Eq. (15) into Eq. (14), for every signal 
in the each ith window changing sequence we can 
obtain the power Pijk  recorded at every point of the 
range zj for each window k (in each ensemble): 

 
( )

2 2

,

( ) ( ) {1 exp[ ( ( )) ]} .

i jijk k

j j j ik

P P z R

a z b z R a z

= =

= π − −
 

(16)
 

Based on the ensemble of the experimentally 
obtained Pijk values, we calculate the family of the 

averaged signals 
1

,

n

jk ijk
i

P P

=
= ∑  for the preset value n 

of the window changing sequences; the family of  

S-functions 2

jjk jkS P z= ; the family of the log S-

functions 2
ln ln jjk jkS P z=  for the use in subsequent 

applications. Parameters a(z) and b(z) of the 
distribution (15) are connected with the scattering 
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phase function and microphysical characteristics of 
scattering particles on the path. And the stronger is 
the inequality (D0 + 2θpz)/2 < A(z), where D0 is the 
beam diameter at the transmitter exit and A(z) is the 
effective radius of the scattering volume at the 
distance z (in the object space), the weaker is the 
effect of the sensing beam characteristics. 

To determine the parameters of the power 
density distribution, Eq. (16) is reduced to the form 

 
2[1 exp ( )],k kP B CR= − −  (17) 

where  
 Ñ = 1/a2; B = πa2b.  

Equation (17) has independent solutions at every 
point of the range, since parameters à and b are 
functions of the distance zj. They are determined by 
the least-square method. The value  

 
( )

( )

2

0

0 2
2

0

1 exp

.
1 exp

k k

k

k

k

P C R

B

C R

 − −
 

=
 − −
 

∑

∑
 (18) 

best fits the preset value Ñ0, and the correction  

 
( )

( )

2 2

0

1
4 2

0 0

2 2 2

0 0 0

4 2

0 0

exp( )

exp 2

exp( )[1 exp( )]
.

exp 2

k k k
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−
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−
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−

∑

∑

∑

∑

 

(19)

 

best fit the values Ñ0 and B0. The correction ∆Ñ1 
refines the solution. In this case, every new, refined 
value Ñ1 is determined as  

 Ñ1 = Ñ0 + ∆Ñ1.  (20) 

Repeating the procedures (18)–(20), we can 
find new values B1, ∆Ñ2 and Ñ2 and refine the 
solution of Eq. (17). Repeating the iteration 
procedures many times, we can determine ÑN and 

BN, where N is the number of iterations, at which 
∆ÑN/ÑN ≤ δ (here δ is the preset relative error of 
calculation). 

The final results of such calculation are the 
distribution parameters of the lidar signal power 
density in the plane of the spatial filter for every 
point of the range zj 

( )
( )

1

N

a z
C z

=  and ( ) ( ) ( )=
π

.

N NC z B z
b z  

Based on these values, we can determine the 
asymptotic signal, the power of the lidar return, 
under the condition that the radius of the filter 
window Rk >> a(z) in Eq. (16) 

 ( ) ( ) ( )2

R a
P z a z b z= π

�
  (21) 

and the parameters of the energy brightness 
distribution in the lidar plane of observation (object 
plane) are 

 ( ) ( )a z z
A z

f
=  and ( ) ( )

2

4
,

b z
B z

q
=

π
 

where q = Dr/f is the relative aperture of the 
receiving objective, and Dr is the diameter of its 
input aperture. The asymptotic signal (21) can be 
also determined through the parameters A(z) and 
B(z) of the scattering volume 

 ( ) ( ) ( )2 2 2

2

[ ]
.

4R a

A z B z D
P z

z

π
=

�
 

5. Experimental results 
 

Figure 5 depicts a family of eight lidar returns 
(corresponding to the number of filter windows with 
different sizes 2Rk) obtained from sensing a cloud 
spaced by 470 m from the lidar. Each signal is the 
result of averaging over ten sensing cycles.  

 
Fig. 5. Family of averaged lidar signals at different sizes of the filter windows: 2R = 1 (1), 2 (2), 3 (3), 4 (4), 6 (5), 8 (6), 
10 (7), and 12 mm (8). 
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Thus, the presented eight curves are obtained 
based on 80 sensing events made with the repetition 
frequency of 24 Hz for the interval of 3.33 s. The 
difference in the signal amplitude at the initial part 
of the path is caused by the different sizes of the 
shadow zsh and transient ztr reception zones for each 
window (see Fig. 4).  

The largest size of the shadow and transient 
zones corresponds to the smallest window. As the size 
of the filter window increases, the power of the 
recorded signals increases in both the lidar transient 
zone (the first 180 m) and nearby the cloud. The 
latter is indicative of the presence of multiple 
scattering. The difference in the signal amplitude is 
especially marked at the end of the sensing path, 
where the energy contribution of multiple scattering 
prevails. Absolutely all signals in the obtained 
families correlate well with each other beyond the 
transient zone, which is indicative of insignificant 
manifestation of dynamic variations of the sensed 
object in the interval of 3.33 s. Technically, most 
difficult is realization of lidar measurements with the 
smallest windows. In the cases that the field of view 
of the receiving system is close to the angular 
divergence of the transmitter radiation (θ0 ≈ θp), even 
minor misalignments of the optical axes of the 
transmitter and the receiving system become 
considerable. In our case, the level of the signal 1 at 
the range of 270–500 m is limited by manifestation 
of such misalignment. 

Based on the family of the averaged signals, we 
have calculated the distribution parameters of the 
lidar signal power density in the plane of the spatial 
filter. The calculated results are depicted in Fig. 6. 
 

 

Fig. 6. Calculated parameters of a lidar signal: variation  
of the cross size of the image spot a(z)  (1) and  power 
density b(z) at the center of this spot (2). 

 
The energy parameter b(z), which is, physically, 

the power density of the lidar signal at the spot  
center, qualitatively copies the dynamics of signal 
variation in the initial family (see Fig. 5). The 
spatial parameter a(z), being the effective spot 
radius, within the transient zone is caused by 
manifestation of parallax; beyond the near zone and 
up to the cloud it varies insignificantly. Under  
single scattering conditions, a(z) is determined by the 

angular size of the transmitted beam cross section. 
The following growth of a(z) is connected with the 
increase of the observed angular size of the scattering 
volume, which is caused by the repeated scattering 
events in the cloud. 

Using a(z) and b(z), we can separate the lidar 
signal P(z) into the single and multiply scattered 
components P(1)(z) and P(2)(z). The power of P(1)(z) 
is concentrated in the central zone of the image, and 
its value can be estimated as  

 ( ) ( ) ( ) ( )21
,P z a b z= π  

where a  is the effective radius of the image of the 
transmitted beam cross section, which determines the 
cross size of the single scattering volume. The 
multiply scattered component can be estimated as 
 

 P(2)(z) = P(z) – P(1)(z). 

As the initial (total) signal P(z), we used  P8(z) 
from the family of averaged signals, which almost 
coincides with the asymptotic signal (21). The radius 
a  of the image spot can be estimated by averaging 
a(z) on the range part, where a(z) ≈ const. However, 
this estimate may include an error, if the signals on 
the averaging interval include the multiply scattered 
component. We estimated the radius a  based on the 
analysis of the family of signals received in the case 
of sensing a scattering screen. The estimated a  is 
equal to the spatial parameter a(zscr) at the distance 
zscr equal to the distance to the screen. Its value 
beyond the transient zone, 0.35 mm, is independent 
of the range, and was used as a calibration constant. 
 Figure 7 depicts the total signal P8(z) and its 
components P(1)(z) and P(2)(z) estimated as described 
above. As can be seen from Fig. 7, beyond the 
transient zone and up to the cloud, the single 
scattered signal 1 almost copies the signal 1 in the 
initial family corresponding to the smallest window 
(see Fig. 4), in which MS is low. And the MS signal 
2 is close to the total signal 3. Deeper in the cloud, 
the energy contribution of MS to the total signal 
becomes predominant, as in the transient zone 
(z < 180 m). 

 

Fig. 7. Separation of the components of the lidar return 
signal P(z):  P(1)(z) (1), P(2)(z) (2), total signal (3). 
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The quality of the presented estimates can be 
quite sufficient for practical applications. 
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