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Results of theoretical and experimental research on development of the radio tomography 
method are presented. An emphasis is on the problem of localization of radiation interaction with a 
medium. Combined use of the physical and mathematical focusing is proposed for solution of the 
problem. High efficiency of the proposed approach for  inhomogeneous medium tomography is 
demonstrated experimentally with the use of two sensing schemes: in transmitted and reflected light, 
as well as multiposition and multifrequency sensing. About 1 cm resolution is achieved for test and 
real inhomogeneities. 
 

Introduction 
 

Radio tomograph is a device employing 

electromagnetic radiation in the radio region to 
retrieve the internal electrophysical structure of the 
object under study based on results of radio sensing. 
The method of radio tomography extends the range of 
measurable parameters and well complements the 
well-known methods of X-ray, NMR, and ultrasonic 
tomography.1–3  

Tomographic systems for diagnostics of 
inhomogeneous media are now finding increasing use 
in different fields of industry and research. The most 
intense development of such systems is observed in 
medicine. Traditional tomographic scanning systems 
based on X-ray radiation have a destructive effect on 
biological media and do not resolve low-contrast 
inhomogeneities. Thus, development of new, 
ecologically safe systems for visualization of the 
internal structure of sensed media seems to be urgent. 

From this point of view, the radio tomography 
methods are most promising, because the use of 
electromagnetic radiation of the radio range permits 
one to extract much more information from 
tomography of various media due to high sensitivity 
of radio waves to small variations of permittivity. 
However, practical realization of radio tomographic 
methods faces some difficulties. 

The first difficulty is the diffraction and multiple 
interaction of radiation with the sensed medium, 
where the wavelength is comparable with the size of 
inhomogeneities. 

The second difficulty is connected with the fact 

that real media can screen and absorb electromagnetic 
waves. Thus, one of the first problems in radio 

tomography is to take into account the multiple 
interaction of radiation with inhomogeneities of an 

object through either adequate description of 
inhomogeneities or instrumental removal of their effect. 

In this paper, we consider the radio tomograph 
realization based on localization of radiation 

interaction with the matter through focusing, which 
significantly decreases the effect of diffraction and 
multiple interactions and thus improves the accuracy 
in interpretation of sensing results. 

Two sensing schemes are considered. The first 
one uses the transmitted light, when the source and 

the receiver of radiation are located on different sides 
of the sensed volume and radiation passes through all 
inhomogeneities. This scheme is traditional in 

tomography. A novelty is in the use of radio radiation. 
The second scheme utilizes the reflected light, when 
the source and the receiver are in one half-space, while 
the sensed volume is in another one. We consider the 
most general case of antennas separated by some 
distance from the sensed volume, that is, when direct 
contact with a medium is absent or impossible by some 
reasons. Such a situation takes place, for example, 
when detecting plastic mines in soil or when sensing 
open wounds. Both schemes under consideration imply 
the multiposition and multifrequency sensing with 
focusing. 

 

1. Mathematical and physical  
focusing of radiation 

 

Consider first the mathematical model of 
formation of wave projections in the case of the 
transmission sensing scheme, that is, in transmitted 
light. For the illuminating wave field in the focal zone 
(Fig. 1) we can write the following equation: 
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is the Green’s function, k = 2π/λ is the wave number, 
and I(rF, r1) is the current on the surface of the 
emitting aperture S1. The amplitude–phase distribution 
of this current should provide for radiation focusing at 

the point rF. According to the double focusing method, 
this distribution is described by the equation4,5: 
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is the Green’s function of the inverse wave field. The 
use of the function I(rF, r1) leads to inphase addition 
of waves near the focal point. 
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Fig. 1. Focusing system. 
 

The field of the illuminating wave Å0(r0) interacts 
with the propagation medium. The main mechanism 
of this interaction is the diffraction at inhomogeneities 
of the refractive index ∆n(r0) = n – 1.  In the general 
case, this function is complex. To describe mathematically 
the arising complex phenomenon, different approximate 
methods are used. In our opinion, the most simple 
and adequate method for the problem at hand is 
based on the so-called phase approximation of the 
Huygens–Kirchhoff method.6 The method is widely 
used for description of strong fluctuations in turbulent 
media. According to this method, the diffraction field 

is described by the integral  
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Here S0 is the virtual Huygens plane drawn across the 

working wave zone near the focal plane (see Fig. 1). 
Integration over z′ in the exponent accounts for the 
additional phase shift caused by inhomogeneities along 
the straight line connecting the current point on the 
Huygens plane r0 and the point r2 in the reception 
plane S2. Such geometric-optic description, in spite of 
its simplicity, nevertheless allows a good description 
of diffraction in inhomogeneous media. 

The field of the wave having passed through the 
sensing object focuses again on the plane S2. The signal 
recorded in this case is described by the integral  
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where the refractive index perturbation is included 
through the function  
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denotes the instrumental function of the focusing system. 

If the focusing point rF is located on the axis 
just in the middle between the focusing apertures S1 
and S2, then the instrumental function Q(rF, r0) has 
the axial symmetry and the form of a body of 
revolution. The calculation conducted, for example, 
for radiation with the working wavelength λ = 2π/k = 
= 3 cm has shown that the localization area of the 
function Q(rF, r0) at the half-power level has the 
longitudinal size of about 30 cm with the cross size of 
3 cm. In the chosen approximation, the localization 
area is independent of the medium parameters, and 
with the given arrangement of the transmitting and 
receiving apertures it is determined only by the 
mutual arrangement of the points rF = (xF, yF, zF) 
and r0 = (x0, y0, z0) and the wavelength λ. Taking 
this into account, we can assume that  

 Q(rF, r0) = Q(ρρρρF – ρρρρ0, z0), 

where z0 describes the position of the virtual Huygens 
plane S0, ρρρρF = (xF, yF), ρρρρ0= (x0, y0). In this case, the 
integral (1) has the form of convolution and describes 
the wave spread of geometric-optics projections of the 
object under study.  

The information on the distribution of perturbations 
of the refractive index ∆n(ρρρρ0, z0) is contained in the 
function f(ρρρρ0). If we separate the contributions to the 

signal connected only with medium perturbations, 
then in place of Eq. (1) we can write 
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The complete set of all possible wave projections 
of the object under study contains the full information 
on the spatial distribution of its electrophysical 
properties, that is, allows retrieval of the function 
∆n(ρρρρ0, z0). 

In the case of multifrequency or pulsed sensing, it 
is sufficient to pass on in Eq. (2) into the time domain 

using the Fourier transform. The arising instrumental 
function – a pulsed characteristic of the system – is 
calculated as  

 Q 
∧
 (ρρρρ0; z0; t) =  

 { }0 0

1
( , ; ) ( ) exp d

2
Q z k E i t

c

∞

−∞

ω= = ω − ω ω
π ∫ 0000ρρρρ . 

Here  

 { }0 0
( ) ( ) exp dE E t i t t

∞

−∞

ω = ω∫  

is the spectrum of the sensing signal. When using a 
broad band of sensing frequencies, the pulsed 

characteristic is well localized in time and, consequently,  
in  the  longitudinal  coordinate z = tc. 

If we use the lidar sensing scheme, in which the 
receiving aperture S2 is integrated with the 

transmitting aperture S1, then only the contribution 
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connected with medium perturbations is recorded and 
Eq. (3) is applicable. If in this case the transmitting 
and receiving antennas are interconnected, for 

example, are located at a fixed distance d and during 
spatial scanning in the plane S1 = S2 move 

simultaneously so that always r2 = r1 + d, then in 
Eq. (2) we should replace  
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As a result, one surface integral in Eq. (2) is 
removed, and the equation for the instrumental 
function becomes much more simple: 
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The corresponding pulsed characteristic of the system 

Q 
∧
 (ρρρρ0; z0; t = 2z0/c) at the wide spectrum of the 

sensing signal and large size of the aperture becomes 
sufficiently well localized in the 3D space. In this 
case, localization in the cross coordinates is achieved 
due to focusing and synthesizing the aperture, while 
in the longitudinal coordinate z0 it is achieved due to 
pulsed scanning. 

The proposed focusing algorithm is simple enough 
and can be realized through the spatial scanning with 
the use of the near-omnidirectional transmitting and 
receiving antennas. This operation is called aperture 
synthesizing. In this case, the focusing is a purely 
mathematical operation realized in a computer. The 
scanning can be replaced by a serial poll of a 
multielement antenna array. This corresponds to the 
use of the so-called distributed aperture. In this case, 
integrals in Eqs. (2) and (4) can be calculated both 
mathematically on the computer and instrumentally 
(at the physical level) using integral elements: cables, 
multichannel integrators, etc. The easiest instrumental 
realization can be obtained using the traditional 
focusing elements: mirrors and lenses. But in spite of 
simplicity, this method has some disadvantages, 
namely, the need of using a mechanical system for 
spatial scanning and impossibility of real-time 

correction of frequency distortions in the system. 
Below we will consider variants of practical use 

of the proposed focusing versions in the transmission 
and lidar tomographic systems. 

 

2. Transmission tomography 
 

Figure 2 depicts a schematic layout of the operative 
experimental radio tomograph. This system measures 

the complex transfer coefficient of the object under study. 
This gives the information about the phase and amplitude 
of radiation having passed through the object. 

To measure phase values of the scattered field, 
the reference and information channels were used. The 
coming radiation is divided between them with a 
double waveguide tee. The experimental setup operates 
in the frequency range of 8–12 GHz. Radiation is 
focused by two gypsum lenses, each about 32 cm in 

diameter. The field in the focal zone has an 

approximately plane phase front and small phase 
variations along the wave channel. 

 

 
Fig. 2. Layout of transmission radio tomograph. 

 

This setup was used for tomographic scanning of 
an inhomogeneous test object. The amplitude–phase 
distribution of wave projections at radio transmission 
was recorded with a Model R4-36 meter of a complex 
transfer coefficient. Calibration was carried out with 
the object removed from the wave channel. The real 
measurement accuracy was estimated as ± 1 dB in the 
level and ± 5° 

 in the phase. 
To obtain many-angle wave projections of the 

test object, it was moved linearly and rotated about the 
working zone of the wave channel. For this purpose, 
the object was placed on a full-revolving platform with 
electrical control that provided for precision rotations 
through the angle θ and motion along one coordinate y. 

The experimental data processing was consisted 
in removing the wave spread of the shadow projections 
through the deconvolution operation along with the 
discrepancy functional minimization. This operation, 
commonly known in the image processing theory, was 
performed with the use of the Fourier transform and 
Wiener filtering with regularization.7,8 To perform it, 
we must know the instrumental function Q(ρρρρ). The 
shape of this complex function can be refined with 
the help of a small test object. Somehow or other, 

deconvolution yields the function 
0

( )f =ρρρρ  

( ){ }0
exp dik n z′ ′= ∆∫ r  entering in the integral in 

Eq. (1). The reconstructed parameter of the 
exponential function reduces the problem of radio 
wave (diffraction) tomography formulated here to the 
well-known problem of X-ray tomography with 

inversion of the Radon transformation.1 
The operation of inverse Radon transformation 

was performed using the well-known Fourier synthesis 
method.1 The linear interpolation of the spectrum of 
spatial frequencies of the object from the polar 
coordinate system to the Cartesian one was applied. 
The data processing algorithm was implemented in 
Mathcad. The experimental data processed in such a 
way are shown in Fig. 3. 

Here we can see a spatial distribution of the 
object permittivity (∆ε = 2∆n) relative to its value in 
a free space. The results obtained agree well with the 
shape and geometrical dimensions of the test body. 
With the mean wavelength of 3 cm, the resolution of 
details  of  the  test  object  can be estimated as 1 cm. 
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Fig. 3. Transmission tomogram of the test object. 
 

3. Lidar tomography 
 

To conduct test experiments by the lidar 

tomographic scheme, a wooden box with the dimensions 
1.1 × 1.1 × 0.9 m was made. On the inside, the box 
was covered with an absorbing material and filled 
with sand to the depth of 0.5 m. As a test object, we 
used a specially made foam polystyrene (foam 
plastic) step-shaped object with the total size of 
15 cm and each step of 5 cm in size. The object was 
immersed in sand to the depth of 11.5 cm. For 
sensing we employed the bistatic lidar scheme. The 
antennas were spaced by d = 14 cm. For frequency 
scanning, the Vector Network Analyzer made by 
Rohde & Schwarz was applied. We used the range 
from 2 to 4 GHz, in which the antennas had the 

standing-wave factor no higher than 1.2. The dynamic 
range for measurement of signals was about 60 dB. 
 

 
 

Fig. 4. Lidar tomogram of the test object. 
 

The spatial scanning with the measuring system 
in two orthogonal directions in the plane lying 30 cm 

above the media interface with the scanning step of 
2 cm yielded a multidimensional spatial-frequency data 

array consisting of 26 × 23 × 256 = 153088 complex 
readouts.  Just   this  array was initial for tomography. 

The data were processed by the algorithm 
described above. Figure 4 depicts the cross section of 
the tomogram obtained at the level of location of the 
test object. 

The comparison of the shape of the real object 
and its tomogram suggests that the resolution 
achieved is about 3 cm. 

The further improvement of the resolution is 
possible due to extending the frequency range or using 
pulsed radiation with the pulse duration of about 
100 ps and shorter. 

 

Conclusion 
 

Based on experimental investigations with the use 
of two sensing schemes (in the transmitted and 

reflected light) the high utility of the focusing effect 
for radio tomography of inhomogeneous media has been 

demonstrated. In this case, the influence of multiple 
interactions decreases significantly and the resolution 
increases. 

Development of the efficient radio tomography 
methods will allow creation of ecologically safe and 
relatively cheap diagnostic facilities for medicine and 
defectoscopy that may be highly competitive to the 
X-ray tomography. The original approach considered 
can be used in the development of optical and 
ultrasonic tomography. 

The further promises for improving the 

informativeness of radio tomography are connected 
with the use of the ultrabroadband short-pulse radio 
radiation. This will provide for deeper penetration of 
radiation and improve the resolution. 
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