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The concept of isodynamism (equivalence) of the influence of parameters on the evolution of 
a dynamic system is introduced. The method of isodynamism detection is demonstrated for the case of 
a nonlinear ring interferometer, which is used in atmospheric adaptive optics. The concept of 
isodynamism allows constructing an algorithm providing for likeness of the evolutions of two 
systems. This approach, for example, suggests a method for compensation for optical vortex influence 
on the processes in a nonlinear ring interferometer. 

 

Introduction 
 

Nonlinear ring optical systems are of interest in 
connection with the development of methods and 

devices for adaptive beaming and imaging in the 

atmosphere.1 A version of ring systems is a two-channel 
laser system (for example, bichromatic emitters) used 
in spectroscopy and remote sensing of the atmosphere.2 

Starting from the early 1990s, nonlinear ring 

optical systems have been considered as prototype of 
information processing devices. The investigations by 
Ikeda and then by Akhmanov and Vorontsov, as well 
as other authors showed that such systems can serve 
generators of regular optical structures and optical 
turbulence in the laser beam cross section.3–5 In a ring 
interferometer including an element with nonlinear-
optical properties, not only temporal and spatiotemporal 
chaos,3–6

 but also spatial one7
 are possible. 

Because of the complexity of processes in 

nonlinear ring optical systems, an important way to 
theoretically study them is, naturally, computer 

simulation. However the large number of parameters 
p(r, t) [and, often, dynamic variables U(r, t)] 
significantly complicates revealing the regularities of 
the influence of p(r, t) – all together and separately 
– on the evolution of the variables. It is an urgent 
question how to reach likeness of evolution of two 
optical systems with similar structures, but different 
values of the parameters? The trial-and-error method 
realized on a computer proves to be inefficient and 
does not guarantee obtaining the  sought  regularities. 

Consequently, an analytical approach should be 
developed. In this paper, it is proposed to develop 
one of its versions starting from analysis of two model 
dynamic systems together with the so-called relation 

of isodynamism (equivalence) of their evolution. Here 
the relation of isodynamism of evolutions is some 
operation of comparing the evolutions of two systems.8 

 

Concept of isodynamism of evolutions 

of two systems 
 

The idea of equivalence can be illustrated if we 

look at the Ohm’s law. If some particular values of 

current ii and resistance ri satisfy the relations i1r1 = 
= i2r2, i1 ≠ i2, r1 ≠ r2, then the values (i1, r1) and (r2, i2) 

are equivalent from the standpoint of the effect on 
the voltage u across each of the two different 

conductors, because u = i1r1 = i2r2. Complementing 
the traditional sign of equality with a subscript, we 
get the designation =u, which will mean “equivalent 
from the viewpoint of the effect on u”. Then in these 

designations we have (i1, r1) =u (r2, i2). It can be 
easily seen that the following is valid: 

 (i1, r1) =u (r2, i2) ⇔ i1r1=i2r2, 

or, in a more general form,  

 (i1, r1) =F (r2, i2) ⇔ F(i1, r1, i2, r2) = 0, 

where 

 F(i1, r1, i2, r2) = i1r1 – i2r2. 

It is obvious that in this example for any fixed 
value (i1, r1) we can find arbitrarily many different 
values (r2, i2) such that (i1, r1) =F (r2, i2). That is, 
equivalent (in the above meaning) values of current i 
and resistance r form some set M(consti) = {i, r : ir = 
= consti}. The sets M(constk) and M(constj) obviously 
do not overlap, if constk ≠ constj, and at constk = constj 
they coincide: M(constk) = M(constj). 

Now let us generalize the above-said in application 
to the equivalence of evolution of two systems with 
similar structure and dynamic variables Ui,j(r, t) ∈  
∈  Ui(r, t) ≡ {Ui,j(r, t)} and parameters pi(r, t) ≡ {pi,k}, 
where i ∈  {1; 2} enumerates the systems, j ∈  {1; …; mi}, 
k ∈  {1; …; Ni}, mi and Ni are the numbers of 
dynamic  variables  and parameters for the ith  system. 

The evolutions of two systems will be called 
equivalent in the meaning F, if the relation of 
equivalence of the evolutions is fulfilled:  

 F[r, t, U1(r, t), U1(r, 0), U2(r, t), U2(r, 0),   

 p1(r, t), p2(r, t)] ≈ 0, (1) 

where F[…] ≡ {F1[…]; …; FN[…]} is some vector 

function; U1(r, 0) and U2(r, 0) are the initial conditions. 
In the general case, the arguments in Eq. (1)  
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[U1(r, t), U1(r, 0), U2(r, t), U2(r, 0), p1(r, t), p2(r, t)] 

should be understood as full spatiotemporal 
realizations of the functions, rather than their 
individual values U1, U2, p1, p2 at a point (r, t). 
Relation (1) in a particular case can take the 
meaning of the relation of identity of the evolutions: 
U1(r, t) − U2(r, t) = 0. 

We shall consider the values [U1(r, 0), p1(r, t)] 

and [U2(r, 0), p2(r, t)] equivalent in the sense of the 
relation F[…] ≈ 0 chosen (expressing this fact 

symbolically: [U1(r, 0), p1(r, t)] =F [U2(r, 0), p2(r, t)]), 
if the condition (1) is fulfilled and p1(r, t) ≠ p2(r, t). 

The operation of comparison (1) of the evolutions 
of two systems is constructed having in mind the 
problem of reaching the likeness of their evolutions, 
that is, similar structures of the phase space and/or 
its separate basins, in particular, similar modes of 
system functioning. 

The above-mentioned analysis of two models and 
the relation of equivalence of the evolutions consist 
in their interpretation as a system of equations. Now 
the unknown values are the values of (a) the vector 
p1(r, t) of the parameters under study and (b) the 
initial conditions U1(r, 0) for the first system. The 

values of p1(r, t) and U1(r, 0) can be expressed as 
functions of the parameters p2(r, t) and the initial 
conditions U2(r, 0) of the second system, that is, the 
solution is presented by the following dependences: 
 

 p1(r′, t′) = fp1[r, t, U2(r, 0), p2(r, t)]; 

 U1(r′, 0) = fu1[r, t, U2(r, 0), p2(r, t)]  (2) 

or 

 p2(r′, t′) = fp2[r, t, U1(r, 0), p1(r, t)]; 

 U2(r′, 0) = fu2[r, t, U1(r, 0), p1(r, t)]. 

It would be logical to call Eqs. (2) the relations 
of equivalence of the parameters of two systems (in 
the sense of equivalence of the evolutions (1)). Here 
the initial conditions can be understood as some 

parameter of the dynamic system, whose variation 
though being able to affect the system evolution, 
cannot give rise to bifurcations in it. 

Below the procedure of revealing the equivalence 
properties is demonstrated as applied to the model of 
structure-forming processes in a nonlinear ring 
interferometer (NRI). 

 

Nonlinear ring interferometer and 
model of the processes in it 

 

The optical layout of a ring interferometer is 
shown in Fig. 1a, where NM stands for the nonlinear 
medium with the length l, G is a linear element that 
performs large-scale transformation of the field (for 
example, rotation in the plane xOy, beam compression, 
and so on); the mirrors M1 and M2 have the intensity 

reflection coefficients R, while the mirrors M3 and 
M4 have the unit reflection coefficient. 

 

 
a 

 
b 

Fig. 1. Schematic layout of a nonlinear ring interferometer 
(a). The ray path (b) is depicted for the case of beam turn 
(by the element G) in the plane xOy by 120°. 

 

Let the field at the entrance into the NRI 
consist of two components with the circular 
polarization (Fig. 2): 

 E(r, t) = e[Θ(r, t)] A(r, t) cos[ωt + ϕ(r, t)] + 

 + e[Θ(r, t) + π/2] B(r, t) sin[ωt + ϕ(r, t)], (3) 

where ω  is the basic frequency of the light field; 
Θ(r, t) = ψ(r, t) + Ωt is the angle between the vector 
e(Θ) specifying the polarization direction and the 
axis Ox lying in the plane (xÎy) of the beam cross 
section (Ω may be comparable with ω); Ω  is the 
frequency of synchronous rotation of polarization 
vectors e lying in the plane referred to here as the 
polarization plane; A(r, t), B(r, t), ϕ(r, t), ψ(r, t) are 
the amplitude, phase, and position of the polarization 
plane of the light field that vary only slightly for the 
time T = 2π/ω. The sign of Ω characterizes the 
direction of rotation of the polarization vectors e. 

If we introduce the following designations: 
a(r, t) ≡ [A(r, t) + B(r, t)]/2, b(r, t) ≡ [A(r, t) − 
–B(r, t)]/2, then Eq. (3) can be expressed through 
projections of E(r, t) as 

 Ex(r, t) = a(r, t) cos[(ω + Ω)t + ϕ(r, t) + ψ(r, t)] + 

 + b(r, t)cos[(ω − Ω)t + ϕ(r, t) − ψ(r, t)], 

 Ey(r, t) = a(r, t)sin[(ω + Ω)t + ϕ(r, t) + ψ(r, t)] − 

 – b(r, t)sin[(ω − Ω)t + ϕ(r, t) − ψ(r, t)]. 
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 a  b                 c 

Fig. 2. Structure of a bichromatic optical radiation E(r, t): bold lines correspond to the instantaneous state of the strength 
vectors, dashed lines show the possible states of these vectors at arbitrary ωt + ϕ(r, t). 

 

Thus, at the interferometer’s entrance we have a 
sum of two quasi-monochromatic fields with the 
amplitudes a(r, t) and b(r, t) and frequencies ω ± Ω 
of the circular polarization with different (at ω > Ω) 
or identical (at ω < Ω) directions of rotation 
(Figs. 2b, c). Here ω (or Ω at ω < Ω) has the meaning 
of a mean frequency, and 2Ω (2ω at ω < Ω) is the 
frequency interval between the field components. To 
reflect the specificity of the optical field under 
consideration, we deal with the parameter of 
bichromaticity (nonmonochromaticity according to 
Ref. 9) q ≡ Ω/ω. 

Then the model of the dynamics of nonlinear phase 
change U(r, t) in the cross section of the laser beam 
in NRI in the large loss or single passage approximation 
can be represented by the following equations9: 

 τn(r)dU(r, t)/dt = De(r)∆U(r, t) − U(r, t) + f(r, t); 

 f(r, t) = n2(r)lk an〈Enm
2

(r, t)〉T = 

 = an n2(r)lk[anm
2

(r, t) + bnm
2

(r, t)] =  

  = Kab(r, t, r) + pKab(r′, t − τ, r) + [γ(r′, t)/σ] × 

  × { Ka(r, t, r′, t − τ) cos[(1 + q)ωτ + ϕ(r, t) − 

 – ϕ(r′, t – τ) + ψ(r, t) − ψ(r′, t – τ)] +  

 + Kb(r, t, r′, t − τ) cos[(1 − q)ωτ + ϕ(r, t) − ϕ(r′, t – τ) − 

 – ψ(r, t) + ψ(r′, t – τ)] } . (4) 

Here k = ω/c; U(r, t) ≡ ωtu(r, t) is the nonlinear 
phase change; 

 τ ≡ τ(r′, t) = te(r′, t) + U(r′, t − te(r′, t))/ω; 

 γ(r′, t) ≡ 2Rκ(r′, t)Cn(r′); p = 0 

in the large loss approximation, but p = [γ(r′, t)/ 
/σ/2]2 in the single passage approximation; the 
”mixed” (Kab) and “partial” (Ka, Kb) nonlinearity 
parameters are  

 Kab(r, t, rn) ≡  

 ≡ (1 − R) an n2(rn)lk [a2(r, t) + b2(r, t)], 

 Ka(r, t, r′, t − τ) ≡ 

 ≡ (1 − R) an n2(r)lk a(r, t)a(r′, t − τ),  

 Kb(r, t, r′, t − τ) ≡ 

 ≡ (1 − R) an n2(r)lk b(r, t)b(r′, t − τ), 

an = 1 or an = 2; Ω = 0; ψ = const. 
The simulation practice shows10 that variations 

of some parameters of NRI and radiation significantly 
affect the dynamics of the processes in NRI, that is, 
formation of regular structures U(r, t) or appearance 
of the deterministic chaos conditions. These 
parameters form the set 

P ≡ P0 = {∆, q, ϕ(r, t), ψ(r, t), ν, ωte(r, t),  

Kab(r, t, rn), Ka(r, t, r′, t′), Kb(r, t, r′, t′)}. 

 

Equivalence of the effect of 
parameters ϕϕϕϕ, ψψψψ, ωωωωte on the evolution 

of nonlinear phase change 
 
In model (4) the parameters ϕ, ψ, te additively 

enter the arguments of the cos functions (the last one 
as a component of the delay time τ). In this 
connection it is logical to put the question: whether 
or not there are such sets of the values of ϕ1, ψ1, te1 
and ϕ2, ψ2, te2, non equal to each other, for which the 
evolution of the nonlinear phase change in the NRI 
nonlinear medium is identical? It is obvious that at 
transition from ϕ1, ψ1, te1 to ϕ2, ψ2, te2 the dynamics 
of U(r, t) keeps unchanged, if the values γ(r′, t)/σ, 
Ka(r, t, r′, t – τ), Kb(r, t, r′, t – τ), Kab(r, t, r), 
Kab(r′, t – τ, r) and the values of cos arguments in 
Eq. (4) do not change, that is,  

 γ1(r′, t)/σ1 = γ2(r′, t)/σ2,  

 Kab1(r, t, r) = Kab2(r, t, r),  

 Kab1(r′, t – τ1, r) = Kab2(r′, t – τ2, r), 

 Ka1(r, t, r′, t – τ1) = Ka2(r, t, r′, t – τ2),  
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 Kb1(r, t, r′, t – τ1) = Kb2(r, t, r′, t – τ2), 

 (1 + q)ωτ1 + ϕ1(r, t) – ϕ1(r′, t – τ1) + 

 + ψ1(r, t) – ψ1(r′, t – τ1) =  

 = (1 + q)ωτ2 + ϕ2(r, t) – ϕ2(r′, t – τ2) + 

 + ψ2(r, t) – ψ2(r′, t – τ2) – 2πi, 

 (1 – q)ωτ1 + ϕ1(r, t) – ϕ1(r′, t – τ1) – 

 – ψ1(r, t) + ψ1(r′, t – τ1) =  

 = (1 – q)ωτ2 + ϕ2(r, t) – ϕ2(r′, t – τ2) – 

 – ψ2(r, t) + ψ2(r′, t – τ2) – 2πj, (5) 

where i, j are integer numbers. 
Introduce now the following designations : 

 δte(r′, t) ≡ te2(r′, t) – te1(r′, t) = τ2 – τ1, 

 δϕ(r, t) ≡ ϕ2(r, t) – ϕ1(r, t), 

 δψ(r, t) ≡ ψ2(r, t) – ψ1(r, t). 

Since 

Kab(r, t, rn) ≡ (1 − R) an n2(rn)lk [a2(r, t) + b2(r, t)], 

taking into account the second equality in Eq. (5), it 
is reasonable to require that amplitudes of the fields 
are equal: 

 a1(r, t) = a2(r, t), b1(r, t) = b2(r, t).  

Assume that |δte(r′, t)| ≤ δte max, and δte max is so 
small that 

 a(r, t) ≈ a(r, t + δte max), b(r, t) ≈ b2(r, t + δte max), 

 ϕ(r, t) ≈ ϕ(r, t + δte max), ψ(r, t) ≈ ψ(r, t + δte max). 

For example, δte max = πl/ω. At small l this 
assumption is not a strong restriction, because in 
construction of the model (4) the approximation of 
slowly varying characteristics of the optical field was 
used. 

The equalities 3–5 in Eqs. (5) are not correct in 
the general case. However, being smoothed down to 
approximate equalities and because  

 a(r, t) ≈ a(r, t + δte max), b(r, t) ≈ b2(r, t + δte max), 

they become valid. As  

 ϕ(r, t) ≈ ϕ(r, t + δte max), ψ(r, t) ≈ ψ(r, t + δte max), 

two last equalities in Eq. (5) can be written in a 
more compact form: 

 ωδte(r′, t) + δϕ(r, t) − δϕ(r′, t – τ1) ≈ π(i + j), 

 qωδte(r′, t) + δψ(r, t) − δψ(r′, t – τ1) ≈ π(i–j). (6) 

The equivalence of the effect of ϕ, ψ, te on the 
evolution of nonlinear phase change U(r, t) in the NRI 
is just expressed by the equalities (6) similar to the 
relations of equivalence of the parameters (2). So, if 
δte(r′, t) ≠ 0, then to compensate for different values 

of te1(r′, t) and te2(r′, t) it is sufficient to modulate 

the input field in NRI (in addition to the space–time 

modulation of ϕ1(r, t) and ψ1(r, t)) by the law 

 δϕ(r, t) = π(i + j) + δϕ(r′, t – τ1) – ωδte(r′, t), 

 δψ(r, t) = π(i – j) + δψ(r′, t – τ1) – qωδte(r′, t) 

or, what is the same, to provide for fulfillment of the 
equalities  

 ϕ2(r, t) = π(i + j) + ϕ1(r, t) + 

 + δϕ(r′, t – τ1) – ωδte(r′, t), 

 ψ2(r, t) = π(i – j) + ψ1(r, t) + 

 + δψ(r′, t – τ1) – qωδte(r′, t). (7) 

Similarly, if δϕ(r, t) ≠ 0, then for compensation 
it is sufficient to meet the conditions  

 ωδte(r′, t) = π(i + j) + δϕ(r′, t – τ1) – δϕ(r, t), 

 δψ(r, t) = π[(1 – q)i – (1 + q)j] + δψ(r′, t – 

 – τ1) + q[δϕ(r, t) – δϕ(r′, t – τ1)].  (8) 

When δϕ(r, t) ≠ 0, one of the important cases is 
the presence of an optical eddy (screw-type dislocation) 
in the structure of the phase front of a monochromatic 
light field (ψk(r, t) = 0 and q = 0) at the NRI 
entrance. Then, using the property of equivalence, we 
can identify the order of the screw-type dislocation of 
the optical field and compensate for the effect of an 
optical eddy on the dynamics of nonlinear phase change 
in the laser beam cross section in the NRI.11 

Analyzing the form of the second equality in 
Eq. (8), it is logical to assume that 

 δψ(r, t) = qδϕ(r, t) + const.  (9) 

Substituting Eq. (9) into Eq. (8), we obtain the 
condition π[(1 – q)i – (1 + q)j] = 0 relating the 

parameter of bichromaticity q to the numbers i and j. 
The condition is fulfilled for any value q (that is, any 
frequency interval 2Ω of the components of the 

spectrum of bichromatic radiation at the NRI entrance) 
at i = 0, j = 0 or for q = (i − j)/(i + j) at i ≠ 0, 
j ≠ 0. The latter alternative can be written in the form 
q = 2i/(i + j) − 1. In this case, for any pair of the 
numbers i, j we can find the pair n and l by the rule 
i = nN, j = N(l – n), where N is an arbitrary 
integer, and vice versa. 

In other words, the assumption (9) on the relation 
between the functions ψ(r, t) and ϕ(r, t) in Eq. (8) is 
valid either for i = 0 and j = 0 or when the 

bichromaticity parameter q is determined by the 
equality q = 2n/l − 1. It can be shown that the equality 

q = 2n/l − 1 provides for repetition (periodicity) of 
the properties of a ring optical system as ωte(r′, t) 
changes by the value multiple of πl. 

Substituting (i + j) = Nl, i – j = N(2n – l), and 

Eq. (9) into Eq. (6), we obtain, in addition to Eq. (9), 
the following equation: 

 ωδte(r′, t) ≈ πlN + δϕ(r′, t – τ1) − δϕ(r, t). (10) 
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Turning to the version that i = 0 and j = 0, we can 
check that the substitution i = 0, j = 0 and Eq. (9) 
into Eq. (6) gives the equation that can be derived 
from Eq. (10) at N = 0. 

It can readily be seen that for any bichromaticity 
parameter q at i = 0 and j = 0 (N = 0) or for 
q = 2n/l − 1 at i ≠ 0, j ≠ 0 fulfillment of the 
equalities (10) and (9) guarantees the validity of 
Eqs. (6) and Eqs. (7) and (8) obtained from them. 
However, the form of Eqs. (9) and (10) is much 
simpler than that of Eqs. (6)–(8) because the 
function δψ(r, t) in Eq. (9) depends only on δϕ(r, t) 
rather than on three functions δψ(r′, t – τ1), δϕ(r, t) 
and δϕ(r′, t – τ1). In addition, in Eqs. (9) and (10) 
there is no relation, through i, j, between the pairs of 
equalities in Eqs. (6)–(8). 

Thus, if the equalities (6) or (9) and (10) are 
valid, then the evolution of the nonlinear phase change 
U(r, t) in ring optical systems with the parameters 
ϕ1, ψ1, te1 or ϕ2, ψ2, te2 is the same. That is, the 
property of equivalence exists on the subset of the 
parameters {ϕ, ψ, ωte} for any initial conditions and any 

values of the parameters. It is only necessary to 
remember that δte max is small, which is difficult to 
express in the statement on the property of the 
equivalence. 

If δϕ(r, t) is fixed in Eqs. (9) and (10), then a sole 

value of δψ(r, t), but more than one values of ωδte(r′, t) 
correspond to it. The set of the values of ωδte(r′, t) 
forms an equidistant series. And this suggests that 
the property of periodicity is a particular case of 
equivalence of the values of some parameter (for 
example, ωte). 

Practicing the approach described here, we can 
prove that the property of equivalence exists at the 
subset {q, ωte, Kab, Ka, Kb} for any initial conditions 
and any values of the parameters from the set P. The 
property is formulated as  

 q2 = 1/q1, Ka2(r, t, r′, t′) = q1Ka1(r, t, r′, t′), 

 Kb2(r, t, r′, t′) = q1Kb1(r, t, r′, t′), 

 Kab2(r, t, rn) = q1Kab1(r, t, rn), 

 ω2te2(r′, t) = q1ω1te1(r′, t), 

providing the equivalence of the evolutions in the 
sense of the relation U2(r, t) = q1U1(r, t). (Therefore, 
at q = Ω/ω > 1, when the role of optical frequency 
passes from ω to Ω, the measure of bichromaticity is 
1/q, rather than the parameter q.) We can demonstrate 
the equivalence of the evolutions by drawing the 
bifurcation diagram of static states based on the 
model (4) for the NRI (Fig. 3). 

 

Conclusion 
 

A new concept of equivalence of the parameters of 
a dynamic system in the sense of the relation F[…] ≈ 0 
chosen  for  the equivalence  of the evolutions is used. 

 
Fig. 3. Demonstration of the property of equivalence: 
diagram branches are symmetric about the straight line 
x = 1 (dashed line). Ka = Kb = K0/(1 + q), Kab = 2K0/(1 + 

+ q), ωte = ωte0/(1 + q), K0 = 3, ωte0 = 0, q(x) = x at 

x ∈  [0; 1] and q(x) = 1/(2 – x) at x ∈  [1; 2). 
 

Thanks to the property of equivalence, it is 

possible to manipulate with some parameters having 
unchanged characteristics of evolution of a nonlinear 
system that were laid in the condition F[…] ≈ 0 in 
constructing it. It is also possible to provide for the 
identical evolutions (for example, periodic behavior) 
of two similar optical systems. 

The property of equivalence in the sense of 
identical evolution of the systems allows the 

determined dependences of the system dynamics on 
some parameters to be extended to those on other 
parameters. Thus, we can, for example, save computer 
resources in drawing maps of dynamic modes of an 
optical system showing the conditions for the regular 
and chaotic behavior of the system. 

The efficiency of the method for revealing 

equivalence is demonstrated from the model (4) of 
the processes in a nonlinear ring interferometer used 
in atmospheric adaptive optics.1 Dealing with the 
concept of equivalence allows us: 

(a) to control the law of space–time variation of 
any two parameters: phase (for example, the order of 
a screw-type dislocation of the optical field with an 
eddy), position of the polarization plane of the optical 
field at the entrance to an NRI, and delay time in 
the NRI, to identify the law of variation of the third 
parameter and compensate for or simulate its effect 
on the dynamics of the processes in the NRI; 

(b) to determine the conditions for periodic 

repetition of the NRI properties at variation of the 
phase change in the feedback loop; 

(c) to find that increasing the bichromaticity 
parameter it is possible to decrease the nonlinearity 
parameters and the phase lag in the NRI, providing 
for the preset character of the evolution. 

Development of the formalism for description of 
optical devices proposed in Ref. 7 in combination with 
the results obtained permits developing the principles 
of synthesis of nonlinear systems based on changing 
the structure of their phase space. 
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