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The Eulerian models of the dispersal of a passive air pollutant are formulated. Those are the 
high-order closure model of the dispersal, in which the concentration fluxes <uic> are calculated by 
the transport equations (DC-model), and the algebraic model of turbulent fluxes <uic> (AC-model) 
obtained by simplification of the DC-model to the algebraic expressions in the approximation of 
weak-equilibrium turbulence. Both of the models use the mean wind and turbulence values from the 
second-order closure model of the atmospheric boundary layer (the three-parameter E–ε–<θ

2> 
turbulence model). The basic characteristics of the thermohydrodynamic fields of a turbulent thermal 
plume above an urban heat island are reproduced by the E–ε–<θ

2> model in quite a good agreement 
with the experimental data and in situ measurements of the turbulence intensity. Calculated results 
on the dispersal of a passive pollutant from the surface source obtained by use of the DC and AC 
models show that the maximum difference in the concentration near the source does not exceed ten 
percent. Besides, it is shown that diffusion terms of the DC-models, excluded while obtaining the 
AC-model, act to smooth out flux gradients. The verification performed demonstrated the validity of 
using the algebraic AC-model in practice of simulating the atmospheric pollutants dispersal. 

 

Introduction 

The growing interest in protection of the urban 
environment and climate, as well as monitoring of 
the urban air quality demands from calculations 
proper accuracy in the concentrations of pollutants in 
the urban atmospheric boundary layer (UABL). The 
meteorological UABL parameters needed for 
calculation of pollutant dispersal should also be 
known with high accuracy. The accuracy needed can 
be achieved with the use of a three-parameter E–ε–
<θ2> mesoscale model of the UABL turbulence. 

1  
Calculations of the dispersal are being made 

using different models for different applications. The 
Gaussian model of the turbulent thermal plume 
modified to take into account the surface orography 
is mostly investigated and applied in the papers by 
foreign authors. 

2,3 Significant deviations from the 
idealized conditions introduce restrictions on the 
validity of Gaussian models, because uncertainties in 
the Gaussian model of plume may be too large. The 
assumed conditions may be, for example, 
meteorological situations with gentle wind and stable 
atmospheric stratification, convective conditions, and 
very irregular and rough surface. All these situations 
may occur in a real UABL during a day. 

Another one approximation is based on the 
Lagrangian model of the dispersal of a great amount 
of liquid particles transported by the mean wind in 
turbulent fields calculated with one or another 
atmospheric model. 

4,5 There are some examples of 

using the Large Eddy Simulation (LES) techniques to 
simulate the behavior of passive and buoyant plumes 
in the convective atmospheric boundary layer. 

6–8  
The third approximation uses the Eulerian 

diffusion model, whose first principle is the equation 
of conservation of mass. This model closed at the 
level of the second-order moments for the 
concentration field was used, for example, in Ref. 9 
in solving the well known problem of diffusion of a 
passive pollutant from a point sources in the 
convective boundary layer.  

In this paper, we formulate two approximations 
for simulating the atmospheric pollutant diffusion. 
The first approximation is the differential Eulerian 
model of atmospheric diffusion (DC-model). This 
model includes prognostic equations for the mean 
concentration Ñ(õi,t) and the second-order moments, 
i.e., the fluxes <uic> and <cθ>. The second 
approximation is the algebraic Eulerian model of the 
atmospheric diffusion; it includes anisotropic equations 
for the vector of turbulent flux of a passive pollutant 
<uic>, which exactly account for the effect of 
buoyancy on the turbulent transport of a pollutant. 
The model is derived from the differential transport 
equation for the fluxes <uic> in the approximation of 
weak-equilibrium turbulence in the same way as in 
Refs. 1 and 10 where analogous equations were 
derived for the vector of turbulent flux of active 
scalar (heat) <uiθ>. 

The basic meteorological parameters (mean wind, 
turbulence parameters) needed for realization of both 



418   Atmos. Oceanic Opt.  /May—June  2004/  Vol. 17,  Nos. 5–6 A.F. Kurbatskii and L.I. Kurbatskaya 
 

models of the atmospheric diffusion are calculated 
using earlier developed three-parameter E–ε–<θ2> 
mesoscale model of the UABL. Note that the effects 
of thermal stratification during formation of large-
scale circulation over the urban heat island are 
reproduced using the three-parameter UABL model in 
a good agreement with the data of instrumental 
laboratory and in situ measurements. 

11  
The aim of this work was to verify both 

atmospheric diffusion models in a real meteorological 
situation of the nighttime UABL (gentle wind, stable 
thermal stratification of the atmosphere) based on 
numerical simulation of the dispersal of a passive 
pollutant from a surface source, whose extent 
coincides with the extent of the surface heat 
source. 

1,10,11 This verification will allow us to judge 
on the possibility of using the algebraic AC model of 
atmospheric diffusion, in contrast to the DC-model, 
as a simpler and easier realizable model. In addition, 
it should be noted that the three-parameter theory of 
turbulent transport developed enables one to use 
realistic boundary conditions on the surface 
accounting for the morphology of the urban surface 
(buildings, etc.). However, the detailed 
measurements in laboratory experiment 

11 were 
conducted for the large-scale circulation over the 
urban heat island of the short relative length 
(zi/D << 1, where zi is the height of the mixing 
layer; D is the diameter of the heat island), that is, 
without resolution of the current details near the 
aerodynamically smooth surface of the prototype of a 
real urban heat island. Therefore, in this study we 
used the boundary conditions, which are usually 
applied to the aerodynamically smooth surface. 

1. Eulerian model of transport  
equations for turbulent mass fluxes 

To describe atmospheric dispersal of a passive 
pollutant, the basic three-parameter E–ε–<θ2>-model 
of turbulence 

1,10 (where E = 1/2<uiui> is the kinetic 
energy of turbulence; ε is its dissipation rate; <θ2> is 
the variance of the turbulent temperature 
fluctuations) should be complemented by the 
equations for the averaged concentration Ñ(õi,t), the 
vector of the turbulent flux of pollutant <uic>, and 
the correlation between the concentration and 
temperature fluctuations <ñθ>.  

In the tensor designations, the equation of 
conservation of mass has the form  

 
c
,

j

j

u cDC
S

Dt x

∂ < >
= − +

∂
 (1) 

where Sc is a source. 
The transport equation for turbulent fluxes of 

the concentration is written neglecting the terms of 
molecular transport and the effect of the Coriolis 
force on the covariance: 

 
c c c c c

,

i
i i i i

D u c
P G D

Dt

< > = + + + Φ − εi  (2) 

where 

 
c

i
i i j j

j j

C U
P u u u c

x x

∂ ∂= − < > − < >
∂ ∂

 

is the generation of turbulent fluxes of the scalar; 
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is the generation by buoyancy; 
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is the turbulent diffusion; 
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is the "pressure–concentration gradient" correlation; 
εic is the dissipative vector.  

For the two last balance accounts of Eq. (2), 
the model, which yielded good test results, 

12 is used: 
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The equation for the vector of the turbulent flux 
of concentration can be written in a more compact 
form  
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where εc is the destruction of the scalar field, and the 
value of the ratio of the time scales 
R = (<c

2>/2εc)/(E/ε) is taken in the calculations to 
be equal to 0.6. 

The equation for the covariance <ñθ> has the 
form  

 

2s c ,

j j
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where the molecular destruction term ∈  cθ is 

parameterized, following Ref. 13, as c 3c c
E

θ
ε∈ = α < θ > . 

In Eqs. (1)–(4)  
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is the material derivative; gi is the vector of 
acceleration due to gravity;  

 β = – (1/<ρ>) (∂<ρ>/∂Θ)p 

is the coefficient of thermal expansion; p is the 
pressure; ρ is the density. The model constants α1ñ, α2ñ, 
α3ñ, α1s, and α2s are equal to 4.0, 0.4, 0.4, 0.22, and 
0.22, respectively. The mean temperature Θ and the 
vector of turbulent heat flux <ujθ> are calculated 
using the three-parameter model of turbulent 
transport. 

1 Equations (1), (3), and (4) form the DC-
model of the atmospheric diffusion of a pollutant. 
 

2. Eulerian algebraic model  
for turbulent mass fluxes 

The algebraic model of the turbulent fluxes of 
concentration can be derived from the transport 
equation (3), assuming weak-equilibrium turbulence. 
This assumption states that the turbulence is, 
approximately, in equilibrium with the mean current 
having the imposed parameters. If this approximation 
is taken for both the velocity field and the scalar 
(temperature, concentration) field, then we obtain 
from Eq. (3) the algebraic equation for the vector of 
turbulent flux of the scalar: 
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It can easily be seen that Eq. (5) is implicit for 
the flux –<uic>, because its right-hand side includes 
the flux <ujc>. The simplest way to make Eq. (5) 
fully explicit is to accept the gradient Boussinesq 
hypothesis in the right-hand side of Eq. (5) for the 
momentum and scalar fluxes, although the 
inconsistency of this procedure is obvious. Thus, it is 
stated that  

 t

2
2 ,

3
i j ij iju u S E− < >= ν − δ  (6)  

 t ,i
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where = ∂ ∂ + ∂ ∂( / / )/2ij i j j iS U x U x  is the tensor of 

mean deformation rates; 2

t /c Eµν = ε  is the 

turbulent viscosity; 2

t 2 ( / )D c R Eµ= ε  is the 

coefficient of turbulent diffusion; δij is the Kronecker 
tensor. The substitution of Eqs. (6) and (7) into 

Eq. (5) yields the following fully explicit equation 
for the vector of turbulent flux of scalar: 

 2 1

1c( / ) 2 ( / ) ( / ) 2i iu c c E R C x E R
−

µ− < > = ε ∂ ∂ − α ε × 

 { }t 2c t 2c t2 (1 ) (1 ) ( / )ij ij jD S D C x × ν + − α + − α Ω ∂ ∂ +   

 2c 1c(1 )/ ( / ) 2 ,iE Rg c+ − α α ε β < θ >    (8) 

where Ωij is the mean tensor of rotations. The 
comparison of Eq. (5) with Eq. (8) shows that the 
buoyancy effects in the final equation (8) have the 
exact form, which, in a certain sense, justifies the 
used procedure of explicit representation of the 
equation for turbulent fluxes of concentration. The 
tests on calibration of the model constants yielded 
the following values: ñµ = 0.095, α2ñ = α3ñ = 0.40. 
The algebraic anisotropic model of the atmospheric 
diffusion (AC-model) includes Eq. (1) for the mean 
concentration and Eq. (8) for the turbulent fluxes of 
concentration.  

3. Tests of DC- and ÀÑ-models  
of the turbulent mass fluxes.  

Boundary and initial conditions. 
Numerical method 

The DÑ- and AÑ-models have been tested for the 
critical meteorological situation arising in the nighttime 
UABL under conditions of gentle wind and stable 
atmospheric stratification. Such a situation is typical of 
formation of the turbulent air circulation over a city – 
the phenomenon called the urban heat island. 

In the laboratory experiment,11 penetrating 
turbulent convection is induced by the constant heat 
flux generated by the surface heat source in the form 
of a circular plate of the given diameter. This heat 
source models the prototype of the urban heat island 
with the small elongation (vertical linear scale much 
smaller than the horizontal one). Fluid-dynamics 
equations describing the circulation over the urban 
heat island with the small relative elongation can be 
written neglecting the Coriolis force and radiation in 
the cylindrical coordinate system. In addition, the 
hydrostatic approximation can be applied, and the 
buoyancy effects can be taken into account in the 
Boussinesq approximation. 

11 
The meteorological parameters needed, such as 

the mean wind, temperature, turbulent velocity and 
temperature fields were calculated using the three-
parameter model of turbulent transport. The 
distributions of these parameters in the turbulent 
thermal plume obtained for the cylindrical geometry 
of turbulent circulation over the urban heat island 
can be found in Ref. 1. In these tests they were used 
as the input information for diffusion calculations. 
Equations (1), (3), and (4) of the DC-model and 
equations (1), (4), (8) of the AC-model are written 
in cylindrical coordinates for the mean concentration 
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C(r,z,t) sought and the second-order moments of the 
pollutant concentration field <urc>, <uzc>, and <ñθ> 
(r is the coordinate in the horizontal direction, z is 
the coordinate directed vertically upwards). The 
equations (1), (3), (4) in the cylindrical coordinates 
are presented in the Appendix. Equations for the 
turbulent heat fluxes <urθ> and <uzθ> have the form 
(see Refs. 1 and 10) similar to the form of equations 
for the turbulent concentration fluxes <urc> and 
<uzc> with the only difference that the term 
describing the effects of buoyancy on the turbulent 
transport of the concentration in the vertical 
direction uses the covariance <ñθ> in place of the 
correlation. The equations for the concentration 
fluxes in the cylindrical coordinates can be easily 
derived from Eq. (8) and are omitted. 

3.1. Boundary and initial conditions 

The boundary conditions for the equation of the 
mean concentration on the surface are realized in the 
form of a surface pollutant source given the constant 
productivity Q. The linear dimension of the pollutant 
source coincides with the linear dimension of the 
heater – the plate of the given diameter. The 
constant vertical flux of the pollutant is specified at 
the source 

 t( / ) ,
c

D C z H− ∂ ∂ =  (9) 

where Hc = Q/(0.5r/D). The value of Q was 
specified from the condition that the Reynolds 
number Re = Q/ν ensures the income of the 
pollutant from the source without the initial 
momentum and, thus, is limited by the velocity of 
the external flux. 

At the initial moment in time, the ambient 
medium is at rest, the initial fields of the 
concentration C, correlation <ñθ>, and concentration 
fluxes <urc>, <uzc> are zero. At the bottom 
boundary of the domain of integration shaped as a 
cylinder, the boundary conditions at z = 0 are as 
follows: 
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while at the top boundary, z = Z: 
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r z
c u c u cC
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The symmetry conditions are imposed at r = 0. The 
same conditions are also used at the external 
boundary of the domain of integration (at 1.8r/D). 
The other boundary conditions for the velocity and 
temperature fields have the same form as in Ref. 1.  
 

3.2. Numerical method 

The systems of equations of the diffusion DÑ- 
and AÑ-models were solved numerically using the 
semi-implicit scheme (second scheme with the 

upstream differences 

14 imposing certain restrictions 
on the second-order approximation) and the method 
of alternating directions at the shifted difference 
grid. The difference equations were solved by the 
sweep method. To preserve the conservative and 
transportation properties of the difference scheme, 
the equations were written in the difference form at 
the near-boundary second-order grid nodes and using 
the corresponding boundary conditions. 

4. Numerical results of the tests  
of the DC- and AÑ-models: dispersal 
of a passive pollutant in the UABL 

The results of modeling the structure of 
turbulent circulation over the urban heat island 
(different parameters of the turbulent velocity and 
temperature fields) were obtained earlier and can 
be found in Refs. 1 and 10. 

The dispersal of a passive pollutant from an 
extended surface source over the urban heat island 
was modeled in order to verify the numerical results 
obtained with the use of DC- and AC-models. It 
should be noted that because the experimental data 
on the pollutant dispersal from the surface source 
over the urban heat island in the considered critical 
meteorological period are lacking, it is impossible to 
directly check the results of numerical realization of 
the diffusion models by comparing them with the 
measurement data. The validity of the models can be 
judged on from indirect evidences. First, the analogous 
model of active pollutant (heat) transport gives the 
results,1 which are in a rather good agreement with 
the data of direct instrumental measurements. 

11 
Second, the accuracy of numerical solution was 
checked at the successively divided 25 × 116 grids 
and 50 × 232 grid.  

The results obtained by numerical simulation are 
shown in Figs. 1–3, where zi is the height of the 
mixing layer, D is the diameter of the hot plate 
(linear dimension of the urban heat island).  

Figure 1 depicts the mean concentration of the 
passive pollutant normalized to the maximum value 
as calculated by the AC- and DC-models. One can 
notice the common effect of the dispersal under 
conditions of stable stratification of the ambient 
medium, namely, penetration of a pollutant outside the 
boundary layer (z/zi > 1). This effect has been 
observed in recent measurements of the buoyant 
plumes ascending in the convective boundary layer. 

15 It 
is worthy to note that the lines of equal 
concentration in Fig. 1a are smoother as compared to 
those in Fig. 1b. In general, the distributions are 
quite similar, as can be seen from Fig. 2, where the 
concentration profiles from Figs. 1a and b are shown 
together. The maximum difference in the mean 
concentration near the source does not exceed 10%, 
which confirms the validity of using the algebraic 
AC-model, which is simpler in realization, for 
turbulent fluxes in the practice of atmospheric 
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dispersal calculations. This is an encouraging 
conclusion for the development of the mesoscale 
model of the urban boundary layer with resolution of 
the detailed morphology of the urban surface, 
because the AC-model of diffusion, as compared to 
the model of transport equations for turbulent fluxes 
of scalar (DC-model), requires no additional input 
information, which is often lacking. Figure 3a depicts 
the lines of flow showing the production of two 
large-scale formations, rotating in the opposite 
directions, with concentrated vorticity, which extend 
from the surface to the inversion layer (z/zi ∼  1). At 
the island center, these eddies produce an intense 

upward motion, carrying out the pollutant upwards 
from the source with its dispersal into the mixing 
layer and then into the inversion layer with the 
diffusion in the horizontal direction within the 
inversion layer. The vector field of the vertical <uzc> 
and horizontal <urc> concentration fluxes calculated 
by the DC-model (see Eqs. (A.1)–(A.4) in Appendix) 
and shown in Fig. 3b along with the profiles of the 
mean concentration shows the usefulness of the model 
used to describe the dispersal of the passive pollutant 
in the stably stratified atmosphere over the urban 
heat island at the gentle wind (for illustration, the 
vector field is shown by arrows of the same lengths). 

 

 
a 

 

 
b 

Fig. 1. Field of the mean concentration of a passive pollutant over the urban heat island as calculated by the AC (a) and  
DC (b) models. 
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Fig. 2. Field of the mean pollutant concentration as calculated by the AC- and DC-models (superposition of Figs. 1a and b). 

 
a 

 
b 

Fig. 3. Lines of flow (a) and the vector field of turbulent vertical <uzc> and horizontal  <urc> fluxes of the pollutant 
concentration with the superimposed mean concentration profiles (b) (superposition of Fig. 1b). 
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Appendix 

This Appendix presents the complete system of 
equations of the DC-model of atmospheric diffusion 
in the cylindrical coordinates, whose dimensionless 
form has been obtained using the same parameters, as 
in the three-parameter model. 

1 In the corresponding 
transport equations for the turbulent fluxes, the 
molecular transport terms and the effect of the 
Coriolis force on the covariance were neglected. 

The transport equation for the mean pollutant 
concentration is 
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The transport equation for the radial 
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vertical diffusion 
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"pressure–concentration gradient" correlation. 
The equation for the vertical turbulent 

concentration flux  
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vertical diffusion 
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buoyancy + “pressure–concentration gradient" corre- 
lation. 

Equation for covariance <cθ>  
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molecular destruction. 



424   Atmos. Oceanic Opt.  /May—June  2004/  Vol. 17,  Nos. 5–6 A.F. Kurbatskii and L.I. Kurbatskaya 
 

In Eqs. (A.1) to (A.4), the following 
designations are used: <uzc>, <urc> are the vertical 
and horizontal turbulent concentration fluxes; Ur and 
Uz are the horizontal and vertical mean velocities; 
E = <ui

2>/2 is the kinetic energy of turbulence 
(KET); ε is its dissipation rate; <ur

2>, <uz
2> are the 

horizontal and vertical KET components; <uzθ>, 
<urθ> are the vertical and horizontal turbulent heat 
fluxes; Θ is the mean temperature; Fr = wD/ND is 
the Froude number (D is the horizontal dimension of 
the heat island; wD is the turbulent convective 
velocity scale; N = (gβ∂Θ/∂z)1/2 is the Brunt–
Vaisala frequency). The values of the model 
constants α1ñ, α2ñ, α3ñ, α1s, and α2s are presented in 
the text. 
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