
458   Atmos. Oceanic Opt.  /May—June  2004/  Vol. 17,  Nos. 5–6 V.A. Arkhipov et al. 
 

0235-6880/04/05—06  458-04  $02.00  © 2004 Institute of Atmospheric Optics 
 

 
 

Identification of unimodal size distributions  
of aerosol particles 

 

V.A. Arkhipov, S.C. Bondarchuk, N.G. Kvesko,  
A.T. Roslyak, and V.F. Trofimov 

 
Research and Development Institute of Applied Mathematics and Mechanics 

at the Tomsk State University 
 

Received February 4, 2004 
 

Practically all known unimodal aerosol particle size distributions are generalized by two 
compact dependences. Equations (approximate and analytical whenever possible) relating the 
parameters of these distributions to the average particle size and geometrical characteristics of the 
probability density functions are obtained. The modified technique for determining the particle size 
spectra and results obtained by processing histograms are presented for the case study of the 
sedimentation analysis. 

 
The disperse aerosol systems are widely spread 

in both natural and technological environments. In 
connection with the rapid development of powder 
technologies, mechanics of multiphase flows, as well 
as of the laser methods for diagnostics of the 
parameters of aerosol particles, call for an adequate 
description of the polydisperse systems. It is an 
urgent problem that the description would allow the 
identification of the particle size distributions to be 
done based on experimental histograms. The 
possibility of approximating the distributions by a 
suitable probability density functions is also 
important in different fields of physics. There exist 
different ways of solving these problems because of a 
wide variety of the particle size distributions known 
from literature (which are traditionally different for 
different subfields of aerosol mechanics and optics). 
In addition, the complete set of relations between 
these characteristics and the distribution parameters 
is absent. 

The fraction of particles of different size in a 
polydisperse ensemble is fully determined by its 
differential number density function f(x), where x is 
the parameter characterizing the size of an individual 
particle (radius, diameter, volume, mass, cross 
section, some equivalent size for nonspherical 
particles, etc.). In this case, df = f(x) dx is the 
fraction of particles, whose size ranges within the (x, 
x + dx) interval.1 The function f(x) has the meaning 
of the probability density distribution, that is, it is 
normalized to unity 
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The analysis of voluminous literature data on 
the particle size distributions of different polydisperse 
systems has shown that almost all natural and 
artificial aerosols with the unimodal distribution 
function can be described using either the generalized  

gamma-distribution (GGD) or the lognormal 
distribution (LND).1–6 The equation for the GGD 
proposed by Shifrin2 in 1951 can be written in the 
form 

 ( )α β= −( ) exp ,f x ax bx  (2) 

where a > 0 is the normalization factor; α, β, and b are 
the parameters of distribution (α > –1, b > 0, 
sgn(α) = sgn(β)). 

The normalizing factor GGD as determined from 
the condition (1) has the form 

 
α+

−β  α += β Γ  β 

1

1 1
,a b
  

where Γ is the gamma-function. 
If β = 1 GGD transforms into the widely used 

gamma-distribution (GD) 

 ( )α= −( ) exp ,f x ax bx  (3) 

whose normalizing factor is a = bα+1 Γ –1(α + 1). 
Note that at integer α, Γ(α + 1) = α!. 

By varying the parameters α, β, and b, one can 
obtain, from the generalized gamma-distribution (2), 
most of the distributions used in the literature. 
Table 1 summarizes the most widely used 
distributions.  

In the majority of cases, these equations have no 
theoretical sense. They are more or less good 
empirical approximations of the actual distributions. 
Nevertheless, their practical significance is obvious, 
since they allow one to describe the particle size 
distribution of a polydisperse ensemble with a limited 
set (no more than three) of parameters. 
Multiparameter equations have gained no practical 
utility because of laborious fit in case of 
approximating the histograms. 
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Table 1. Empirical distribution laws of polydisperse particles 

α b β f(x) Distribution Applications 

2 b 3 ax2
 exp (–bx3) Smolukhovsky–Schuman Atmospheric physics (clouds, 

precipitation), colloid systems 
0 b 1 a exp (–bx) Martin(Marshall–Palmer) Atmospheric physics (clouds, 

precipitation), grinding products 
2 b 2 ax2

 exp (–bx2) Maxwell–Boltzmann Soot dispersion in flames 
1 b 2 ax exp (–bx2)  Romashov Industrial dusts 

–4 0 – ax 

–4 Junge Atmospheric physics (haze, 
surface aerosol) 

2 b β ax2
 exp (–bx 

β) Nukiyama–Tanasawa Fluid spraying 
β–4 b 1 axβ–4

 exp (–bx )  Rosin–Rammler Fluid spraying, grinding products 
α b 2 axα

 exp (–bx2)  Weining Grinding products 
 
The lognormal distribution belongs to the class 

of Captain distributions3 derived based on the Gauss 
distribution. In this case, the particles are distributed 
over the size according to the lognormal law, and the 
equation for the distribution function has the form1: 
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where Ln(xp) is the mathematical expectation of the 
log particle size (xp is the mean geometric size); 
Ln2(σp) is the root-mean-square deviation of the log 
size (in the non-Russian literature, σð is usually 
called the standard geometric deviation). In contrast 
to GGD obtained empirically, LND has certain 
physical grounds. In 1941 Kolmogorov has shown 
theoretically that LND is the limiting case of a 
rather general scheme of a random grinding process.4 
It is natural to assume that LND can also be a result 
of the random coagulation process of drops in a two-
phase flow in the limiting case of the large number of 
interactions between particles. The lognormal law is 
widespread in nature. It governs the distributions of 
particles suspended in air and water, ground rock 
particles, the distributions formed due to chemical 
sedimentation and screen analysis, the size 
distribution of grains of the placer gold, etc.5 It is 
interesting to note that the LND function provides, 
for example, quite a satisfactory description of the 
weight growth in schoolchildren after vacation.3 

The graphical analysis performed in Ref. 6 has 
shown a good mutual approximation of LND and GD 
(Fig. 1). The larger the parameter α of the gamma-
distribution, the better the approximation. The 
higher values of the parameter α correspond to 
smaller variance of the log particle size. 

It is convenient to write the equation for LND (4) 
in a compact form: 
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where the parameters à, β, and b are related to xp, σð 
as 
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Fig. 1. Geometric characteristics of the distribution f(x). 

 

The parameters à, β, and b of the distributions 
(2), (3), and (5) cannot be illustrated graphically. In 
the practice of the disperse system analysis, it is 
convenient to evaluate the shape of the distribution 
using the geometric characteristics of the probability 
density function, such as the modal size x0 (the point 
of maximum of the probability density function), 
f0 = f(x0) = fmax(x), the distribution half-width δ and 
asymmetry ε (see Fig. 1):  
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where 
 f(x1) = f(x2) = f0/2. 

For the gamma-distribution, the relationships 
between its parameters and the geometric 
characteristics of f(x) (except for asymmetry) can be 
found in Ref. 2. In this paper, these equations are 
obtained for GGD, GD, and LND (Table 2). Along 
with the distribution function, averaged 
characteristics are widely used for description of the 
disperse media. Most of these characteristics are 
determined as follows: 
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where m and n are integer numbers denoting the 
order of the moment of the distribution function. 
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Table 2. Geometric characteristics of the probability density and some mean particle sizes 
 as expressed through the parameters of the distributions 

Parameters GGD GD LND 
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The most widely used characteristics are: 
– x10 – arithmetical mean size; 
– x20 – root-mean-square size; 
– x32 – mean volume-surface size; 
– x43 – mass-average size (mathematical 

expectation x for the differential function of the mass 
particle size distribution g(x)). 

By substituting Eqs. (2), (3), and (5) into 
Eq. (7) one can obtain the equation for calculating 
xmn for GGD, GD, and LND, respectively: 
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The particular dependences for x10, x32, x43 on 
the parameters of the distributions are given in 
Table 2. 

Table 3 presents the equations for estimation of 
the GD and LND parameters from the geometric 
characteristics of the distribution function f(x). 

The practical application of this approach can be 
illustrated by reconstruction of the distribution 
function from the data obtained from the 
gravitational-sedimentation analysis of ferrosilicon 
particles. First, it should be noted that since the 
series of experimental values is usually limited, it is 
necessary to use some mean particle sizes of the 
obtained mass fractions for refinement of the derived 
dependences. In particular, for gravitational 

sedimentation the equation for the effective size of 
fractions can be derived from the following concepts. 

 

Table 3. The parameters of the distributions expressed 
through the geometric characteristics of the probability 

density function 

Parameter GD LND 
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Assume that N fractions of particles with the size 
(Dj –Dj+1) are deposited in the Stokes mode, that is, 

= ϕ 2

i iv D , where v is the particle velocity, D is the 

particle diameter, and ϕ is the constant dependent on 
the medium characteristics and the density of the 
particulate matter. Then, from the law of conservation 
of mass, we have  

 
=

= ∑
2 2

1

,

N

m mi i

i

c D c D  (8) 

where cm, D are the mass concentration and the mean 
effective diameter of particles in the considered range 
of the particle size; cmi is the mass concentration of 
particles of the ith fraction. 
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From Eq. (8) it follows that  
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Assuming that the particle size distribution is 
uniform in the range (Dj, Dj+1), that is, zi = const 

and taking account that 
=

=∑
1

1

N

i

i

z , we obtain  
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Passing on from summation to integration in Eq. (9), 
we obtain  
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The comparison of Eqs. (7) and (10) shows that, 
in the case of gravitational sedimentation, the root-
mean-square size D20 should be used as the 
characteristic point on the histogram columns. 

Figure 2 shows the initial data processed by 
Eq. (10) (closed circles) and the corresponding 
histogram of mass fraction of ferrosilicon particles, 
along with the reconstructed particle size distribution 
functions in the GD (curve 1) and GGD (curve 2) 
classes after scaling the normalized dependences to 
the values of the initial parameters. For obtaining 
these dependences, from the graphical approximation 
the following parameters were determined: x0 ≈ 35, 
x1 ≈ 17.5, x2 ≈ 62 µm. Equations (6) were used to 
calculate the distribution half-width δ and asymmetry 
ε, which, in their turn, have allowed the estimation 
of α, b, and β for GD and GGD to be done by the 
equations from Table 2. Then the normalizing factor, 
a, was determined from the parameters of the 
distributions by use of the above dependences. 

Thus, the data shown in Fig. 2 have yielded the 
following parameters of the distribution laws: 

for GD: α = 3.387,  b = 0.097; 

for GGD: α = 1.739,  β = 1.947,  b = 0.001. 
 

Thus, the approach presented allows one to 
determine adequate particle size distribution 
functions in approximating the experimental data on 
the particle size distributions. It also enables one to 
obtain estimates of the parameters of distributions 
within the class of distribution functions chosen, as 
well as to evaluate the average parameters of the 
polydisperse system under study. 

 

 

Fig. 2. Initial data and reconstructed particle size 
distribution functions.  
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