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Within the framework of small-angle approximation of the radiative transfer theory, a new 
equation is derived for the power of lidar return taking into account multiple scattering at small 
angles and anisotropic single scattering at large angles. It is shown that the solution of the problem 
can be reduced to calculation of medium irradiance with the preserved complete information about 
the scattering phase function in the small-angle region and near the backward direction. The 
technique proposed is used to assess the domain of applicability of the approximation of isotropic 
backscattering phase function in the problem of airborne sensing of seawaters. 

 

Introduction 

By now a considerable progress has been 
achieved in constructing numerical-analytical models, 
describing lidar returns with the allowance for 
multiple scattering. The lidar equation is usually 
derived taking into account the multiple scattering at 
small angles and only one event of scattering at large 
angles.1–10 However, even in this simplified version, 
the calculation of the contribution from multiple 
scattering to the lidar return remains a cumbersome 
problem in the case that the scattering phase function 
is variable in the range of angles close to the 
backward direction. 

The problem becomes much simpler if the 
scattering phase function in the backscattering range is 
replaced by some average characteristic, which 
generally depends on both optical characteristics of 
the medium and geometric parameters of the lidar 
system. 

To describe lidar returns, Bissonnette and Hutt 

1,2 
proposed a phenomenological model, which considers 
the multiple scattering as a diffusion process. The 
backscattering anisotropy in Refs. 1 and 2 is taken 
into account by introducing a dimensionless 
coefficients, which characterize the measure of 
variability of the scattering phase function near the 
backward direction and can be determined through 
its averaging by different methods.  

Another model of the lidar return 

3 is constructed 
based on a successive consideration of individual 
events of the scattering at small angles. For every 
number of scattering events, this model considers 
"effective" values of the scattering phase function, 
which are supposed constant and calculated with the 
aid of the weighted averaging of actual scattering 
phase functions. A significant part of these models 

1–3 
is the use of the Gaussian approximation for the 
small-angle scattering phase function. 

More general theory based on the expansion of 
the radiative transfer equation (RTE) over the 
multiplicity orders of scattering at large angles and 
the application of the Green's function method has 
been developed in Refs. 4 and 5 for the case of 
isotropic backscatter. Based on the results from 
Ref. 5, the equations were derived 

6,7 for lidar returns 
that allow for the disperse composition of the 
medium in sensing the atmosphere and seawaters. 
These equations are based on the asymptotic 
properties of signals in the case, when the receiver 
field of view increases infinitely. This approach 
allows the small-angle scattering phase function to be 
replaced in calculations by only one numerical 
parameter, which is determined by the effective size 
of particles. 

The theory developed in Ref. 5 is generalized 
and developed in Refs. 8 and 9 with the allowance 
for anisotropy of the backscattering phase function. 
However, the practical implementation of the results 
of Refs. 8 and 9 is significantly complicated due to 
the need to perform laborious numerical calculations 
of multiple integrals. In Ref. 10, to facilitate the 
calculation of the power of backscattered signal by 
equations from Refs. 8 and 9 when determining the 
radiation intensity in the medium, it is proposed to 
use the small-angle diffusion approximation (SDA) of 
radiative transfer theory. At the same time, it should 
be taken into account that the information about the 
fine structure of the light field in the small-angle 
region is lost upon the transition to SDA, and this is 
significant for the solution of inverse problems of 
laser sensing.  

Within the framework of the small-angle 
approximation, this paper proposes a new approach 
to the approximate consideration of backscattering 
anisotropy in lidar returns. With the complete 
information about the scattering phase function in 
the small-angle region kept, the technique developed 
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reduces the solution of the problem to the calculation 
of irradiance distribution in the medium, which 
considerably decreases the computational time.  

The technique is applied to assess the effect of 
the backscattering anisotropy in the calculation of 
the contribution from multiple scattering in sensing 
the seawaters. The calculated results make it possible 
the determination of the applicability limits for the 
approximation of the isotropic scattering phase 
function depending on the microphysical properties of 
the disperse suspended matter in the seawater, the 
optical thickness of the layer, and the field of view 
of the lidar receiving system. 

1. Formulation of the problem  
and the scheme of solution 

The aim of this section is the mathematical 
description of the backscattered signal in dense 
coarse-dispersed media with the allowance for the 
anisotropy of the scattering phase function near the 
backward direction. The multiple scattering will be 
considered within the framework of the small-angle 
approximation of radiative transfer theory. Since this 
approach has already gained a sufficient consideration 
in the literature, including the needed reference 
material (see, for example, Refs. 11–13), here we 
will describe only the main stages of the problem 
solution in the part, which presents new elements. 

In solving the problems of radiative transfer 
through the media with anisotropic scattering in the 
coefficient of directed light scattering β(γ) = σx(γ), 
where σ is the scattering coefficient, and x(γ) is the 
scattering phase function normalized as 

4

( )d 1,x

π

γ Ω =∫  it is a usual practice to separate the 

forward peak of β1(γ) = σ1x1(γ), which describes the 
scattering at small angles. Designating the residual 
part as β2(γ) = β(γ) – β1(γ), we can write the 
following equation for the scattering phase function: 

 γ = γ + γ1 1 2 2( ) ( ) ( )x a x a x  (1) 

with the weighting coefficients a1 = σ1/σ and 
a2 = σ2/σ, σ = σ1 + σ2. As was already mentioned in 
the Introduction, theory of laser sensing usually takes 
into account multiple scattering at small angles and 
only one event of the scattering at large angles. This 
leads to the solution of the radiative transfer 
equation with the source density function Q in the 
form 

 2 2 1

4

( , ) ( , ) ( , )dQ x I

π

′ ′ ′= σ ∫R n n n R n n , (2) 

where R = (x,y,z) is the radius vector of a point; n is 
the unit direction vector; the function I1(R,n′) 
describes the spatial-angular intensity distribution of 
the radiation at the forward propagation of the 
sounding pulse within the framework of the small-
angle approximation. In practice, the scattering phase 

function in Eq. (2) is often substituted by some 
effective characteristic, assuming, for example, 
x2(γ) ≈ x2(π). This substitution does not lead to large 
distortions in the case of smooth behavior of x2(γ) 
near the backward direction and at small receiver’s 
field of view.  

Within the framework of the small-angle 
approximation, the intensity I1(R, n′) has a 
significant value only in a small vicinity of the initial 
direction of the light beam propagation, in the 
medium. Let this direction coincide with the 
direction of the axis Oz. Then in the case that the 
angle γ = (n 

∧
 n′) between the directions n and n′ is 

close to π and, consequently, the angle θ = π – γ is 
small, we can write the approximate equation  

 ⊥ ⊥ ′θ ≅ + ,n n  (3) 

where ⊥n  and ⊥′n  are the projections of the vectors 

n and ′n  onto the plane, orthogonal to the axis Oz. 
On these assumptions, the right-hand side of Eq. (2) 
can be presented as a double integral  

 2 1( , ) ( ) ( , )d ,Q x I⊥ π ⊥ ⊥ ⊥ ⊥′ ′ ′= σ +∫∫R n n n R n n  (4) 

where xπ(θ) = x2(π – θ). The following procedure of 
derivation of the solution is based on the ordinary 
application of the method of Green's function and 
the optical reciprocity theorem. To facilitate the 
reasoning, we will consider below the problem for 
the case that the medium is irradiated with a point 
source of a pulsed unidirectional (PUD) radiation, 
which generates the following intensity distribution 
on the medium boundary z = 0  

 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= = δ − δ − δ0 0( , 0, , ) ( ) ( ) ( )I z t tr n n n r r  (5) 

at ⊥ ⊥= =0 00, 0n r . The extension to the case of an 

arbitrary intensity distribution on the boundary 

⊥ ⊥=( , 0, , )I z tr n  presents no problems. Thus, the 

function 

 
⊥ ⊥

⊥ ⊥ ⊥ ⊥

′ =

′= = → δ −

1

0 0

( , , , )

( , 0, , , ) ( / )

I z t

G z z t z c

r n

r n r n

 
 (6)

 

in Eq. (4) is simply the Green's function for RTE in 
the small-angle approximation with the boundary 
condition (5). The small-angle Green's function of the 

stationary problem ⊥ ⊥ ⊥ ⊥ ′= →0 0( , 0, , , )G z zr n r n  has a 

sharp peak in the direction ⊥ ⊥′ = 0n n  of the light 

beam irradiating the medium and decreases fast as the 

angle ⊥′ ′γ = n  deviates from zero. The scattering phase 

function ( ),xπ ⊥ ⊥′+n n  to the contrary, changes much 

more slowly. Therefore, we can expect that 
substitution of the small-angle Green's function by 
the two-dimensional δ-function 

 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′= → = δ −0 0 1 0( , 0, , , ) ( ) ( )G z z Er n r n r n n  (7) 

with the normalizing factor  
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 1 0 0( ) ( , 0, , , )dE G z z⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′= = →∫∫r r n r n n   (8) 

does not lead to a large error in the integral (4). It 
can be seen from Eq. (8) that the normalizing factor 
E1(r⊥ ) is the spatial irradiance, generated by the 
PUD radiation (5) at the point r⊥ . Taking into 
account the approximation (7), we obtain the 
following equation for the source function of the 
stationary problem:  

 2 1( , ) ( ) ( ).Q x E⊥ π ⊥ ⊥= σR n n r  (9) 

Assume then that the observations in lidar 
measurements are conducted in the plane z = 0. 
Then, using the Green's function method and the 
optical reciprocity theorem, we can write the 
following equation for the light field in the 
observation plane, corresponding to the source 
density Q(R,n⊥ ) [Eq. (9)]: 

 

⊥ ⊥ ⊥ ⊥

π ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

′ ′= = σ ×

′ ′ ′ ′ ′× = − → −

∫∫

∫∫

2 1( , 0, , ) ( /2) ( )d

( ) ( , 0, , , )d .

S

I z t c E

x G z z

r n r r

n r n r n n

 

(10)

 

Here S is the integration plane z′ = ct/2. By analogy 
with the case considered above, in the integration 
over the angular variable in Eq. (10), the Green's 
function is approximated as: 

 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′ ′ ′= − → − = δ −2( , 0, , , ) ( ),G z z Er n r n n n   (11) 

where 

 
2( , , )

( , 0, , , )d

E z

G z z

⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

′ ′− → =

′ ′ ′ ′= = − → −∫∫

r n r

r n r n n

  
(12)

 

is the spatial irradiance generated at the point 

⊥′ ′= ( , )zR r  by a fictitious PUD radiation from a 

source located at the point r⊥  of the plane z = 0 and 
emitting along the direction –n⊥ . This leads to the 
following equation for the light field intensity 
distribution in the plane z = 0:  

 

2

1 2

( , 0, , ) ( /2) ( )

( ) ( , , )d .

S

I z t c x

E E z

⊥ ⊥ π ⊥

⊥ ⊥ ⊥ ⊥ ⊥

= = σ ×

′ ′ ′ ′× − →∫∫

r n n

r r n r r
  

(13)
 

In the small-angle approximation, the property 
of invariance is true for the spatial irradiance: 

 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥′ ′ ′ ′→ = − −2 0( , , ) ( )E z E zr n r r r n , (14) 

where E0(r⊥ ) is the scattering function of the light 
beam (SFB), that is, the irradiance distribution in 
the plane z, generated by the PUD radiation from a 
source located at the origin of coordinates and 
emitting along the direction of the axis Oz. Taking 
into account the property (14), the integral in Eq. (13) 
takes the form of the two-dimensional convolution in 
the plane S: 

 

2

1 0

( , 0, , ) ( /2) ( )

( ) ( )d .

S

I z t c x

E E z

⊥ ⊥ π ⊥

⊥ ⊥ ⊥ ⊥ ⊥

= = σ ×

′ ′ ′ ′× − −∫∫

r n n

r r n r r

 
(15)

 

The application of the convolution theorem to 
Eq. (15) finally yields  

 

2

0

0

( , 0, , ) ( /4 ) ( )

( ) ( )d ,

I z t c x

J z F

⊥ ⊥ π ⊥

∞

⊥ ⊥

= = π σ ×

′× ν ν − ν ν∫

r n n

r n

  
(16)

 

where  

 ( ) ( ) ( )ν = − τ + ν  exp 2F z g  (17) 

is the optical transfer function (OTF) of the 
fictitious medium, whose extinction and scattering 
coefficients are twice as high as their true values; 

 ( ) ( )
0

d ;

z

z s sτ = ε∫  ( ) ( ) ( )1 1

0

2 d .

z

g z s x s sν = σ − ν∫ �  (18) 

Equations (16)–(18) employ the following 
designations: ν is the spatial frequency; J0(.) is the 
first-kind zero-order Bessel function; τ(z) and ε(z) are 
the optical thickness and the extinction coefficient; 
�
1( )x p  is the Hankel transform of the small-angle 

scattering phase function. 
Accurate to a constant factor before the integral 

sign, the structure of Eq. (16) resembles the equation 
for the intensity of light field generated by an 
isotropic radiation from a point source.13 The main 
difference from the case mentioned above is the 
explicit dependence of the backscattering phase 

function π ⊥( )x n  on the angular coordinate. Using 

Eq. (16), we can easily calculate the power of the 
lidar return for the given parameters of the receiving 
system. The following analysis will be restricted to 
the case that the sensitivity function of the lidar 
receiving system has a circular symmetry and the 

stepwise behavior over the variables ⊥=r r  and 

⊥γ = n : 

 
r r

( , ) ( ) ( ),D r U R r Uγ = − γ − γ   (19) 

where U(.) is the unit stepwise function; Rr and γr are 
the radius of the entrance pupil and the halved field of 
view of the receiving system. Under these conditions, 
if the lidar emits a δ-pulse with the unit energy, the 
lidar return power detected at the time t = 2z/c is 
described by the following equation: 

 
r

2

0

( ) ( ) ( ) ( ) ( ) d ,P z c z x B z

γ

π= π σ γ γ γ γ∫  (20) 

where 

 0 r

0

1
( ) ( ) ( ) ( , )d ;

2
B r J r F U R

∞

= ν ν ν ν ν
π∫

�   (21) 
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νν =

ν
� 1 r

r r

r

2 ( )
( , )

J R
U R S

R
  

is the Hankel transform of the first co-factor in 

Eq. (19); = π 2

r rS R  is the area of the entrance pupil 

of the receiving system. At a sufficiently small size of 

the entrance pupil ν →�
r r

( , )U R S , and the function 

B(r) = SrE(r) coincides, accurate to the constant 
factor Sr, with the SFB E(r) in the fictitious 
medium. 

Separation of signals due to single  
and multiple scattering  

For the following analysis of the lidar return 
P(z), it is convenient, as usually, to separate the 
components due to single and multiple scattering in 
Eq. (20). These components correspond to the 
following terms in the OTF  

 ν = + ν0 sc( ) ( ),F F F  

where − τ= 2 ( )
0

z

F e . After the appropriate substitution 

in Eq. (21), we obtain the following equation for the 
lidar return in the single scattering approximation 
with the allowance for the angular dependence of the 
single scattering function near the backward 
direction: 

 − τ
π= π β γ γ γ∫

r
/

2 ( )
1

0

( ) ( ) ( , ) d ,

R z

z
P z c e z   (22) 

where 

 π πβ γ = σ γ2( , ) ( ) ( )z z x    (23) 

is the coefficient of directed scattering, βπ(γ) = 
= β(π – γ). Equation (22) is derived under condition 
that zγr > Rr, determining the far sensing zone,3 
which is of greatest practical interest.  

In the case that the backscattering phase 
function remains constant within the domain of 
integration in Eq. (22), that is, βπ(z,γ) = βπ(z), 
Eq. (22) takes the standard form:  

 − − τ
π= β2 2 ( )

1 r( ) ( /2) ( ) .z

P z c S z z e  (24) 

For the most real situations (except for, for 
example, the mirror reflection from crystal particles), 
the last assumption is valid, which justifies the 
applicability of the lidar equation in the form (24) 
within the framework of the single scattering 
approximation.  

The equation for the contribution of multiple 
scattering, related to P1(z), to the lidar return: 

 = − 1 1[ ( ) ( )]/ ( )m P z P z P z ,  (25) 

can be easily obtained from general equations (20) 
and (21) with Fsc(ν) substituted for F(ν). With the 
allowance made for expression (24), this leads to the 
following equation: 

 ˆ( ) ( / ) ( ) ,
r

r sc

0
0

2
d

z

m x z E
F

γ
πγ = ρ ρ ρ ρ∫  (26) 

where the function  

 
ˆ( ) ( )/ (0)x x xπ πγ = γ   (27) 

describes the angular variability of xπ(γ) with respect 
to the backward direction, and the function Esc(ρ) is 
the SFB component, corresponding to the scattered 
component Fsc(ν) at the direct propagation of light 
through a fictitious medium. At xπ(γ) = const, 
0 ≤ γ ≤ γr, the function m(γr) (26) becomes 
independent of the scattering phase function xπ(γ) 
and Eq. (26) completely coincides with the solution 
obtained earlier for the case of the isotropic 
backscattering phase function.13 In combination with 
the Eq. (24), Eq. (26) gives full description of the 
lidar return formed due to multiple scattering at 
small angles and the single anisotropic scattering, 
taken into account near the backward direction.  

2. Results of numerical simulation 

In this Section, we will consider some examples 
of the function m(γr) (26) calculated taking into 
account the backscattering anisotropy and will 
compare them with similar results obtained assuming 
xπ(γ) = const in application to airborne lidar sensing 
of seawaters.  

The earlier results 

14 of investigation of the 
scattering phase functions for radiation at the 
wavelength λ = 0.532 µm by particles of suspended 
matter in seawaters, formed by two fractions: of 
mineral (t-fraction) and organic (b-fraction) origin 
served the prerequisites for the detailed consideration 
of this case.  

Let us remind briefly the conditions of the 
numerical simulation considered in Ref. 14. The 
disperse composition of the t-fraction was 
characterized by the power-law particle size 
distribution: 

 −ν

≤ ≤ µ= 
≤ ≤ µ

t0

t

t

, 0.01 0.05 m,
( )

, 0.05 2 m

A r
s r

A r r
 (28) 

with the exponent ν = 1–4. The relative refractive 
index of the t-fraction particles was nt = 1.15. The 
size-distribution function for the b-fraction particles 
was simulated using a modified gamma-distribution  

 
α γ     α 

 = − −    γ        
b b

m m

( ) exp 1
r r

s r A
r r

  (29) 

with the variable modal radius rm = 5–15 µm and the 
fixed parameters α = 8 and γ = 3. The values of the 
relative refractive index nb were set within the range 
from 1.03 to 1.05. The weighting factors At and Ab in 
the distributions st(r) and sb(r) were chosen in such a 
way that they ensured the given ratio between the 
contributions of these fractions to the total scattering 
coefficient σ = σt + σb. 
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The total scattering phase function for both of 
the fractions was determined by the equation  

 t b( ) ( ) (1 ) ( ),x px p xθ = θ + − θ   (30) 

where xt(θ) and xb(θ) are the scattering phase 
functions of the t- and b-fractions of the suspended 
matter, respectively; the parameter p = σt/σ 
determines the relative contribution of the t-fraction to 
the total scattering coefficient σ. Typical example of 
the angular dependence x(θ), calculated by Eq. (30) 
for the microstructure model of the suspended matter 
described by Eqs. (28) and (29), is shown in Fig. 1. 

 

175 176 177 178 179 
0 

0.002 

0.004 

0.006 

0.008 

0.01 

3 

2 

2 

1 

x(θ), sr–1 

θ, deg 

 1: xt(θ) 
 2: xb(θ) 
 3: x(θ) 

 

Fig. 1. Examples of calculated scattering phase functions 
xt(θ) at ν = 2 (curve 1), xb(θ) for the modal radius 
rm = 10 µm (curve 2) and their weighted sum x(θ) at 
p = 0.2 (curve 3). 

 

The numerical calculations made have allowed us 
to find the following properties of the scattering phase 
functions of the suspended matter.14 First, the isotropic 
behavior in the angular range from 175 to 180° is 
mostly inherent in the scattering phase function of fine 
particles belonging to the t-fraction. Second, the 
angular dependences of the scattering phase functions 
for coarse particles of the b-fraction have a 
diffraction peak (glory) at θ > 179° (seen in Fig. 1), 
whose position and amplitude depend on the particle 
size and the refractive index. Consequently, we can 
expect that under certain conditions the observed 
anisotropy of the scattering phase function near 180° 
will manifest itself in the behavior of the lidar return 
with multiple scattering taken into account. 

In the numerical simulation, whose results are 
presented below, the scheme and conditions of 
sensing were taken analogous to those described in 
Ref. 15. It was assumed that the sensing of the water 
depth is carried out by a lidar located at the height 
H = 300 m above the sea level; the signal was 
detected from the depth of 20 m; the receiver’s field 
of view γ

r
 varied from 0 to 15 mrad.  

To take into account the "atmosphere–sea" 
interface, the parameter z in Eq. (26) was replaced, 
as in Ref. 15, by l = H + (z – H)/nw, where nw is 
the refractive index of the seawater. In addition, the 

argument γ of the scattering phase function in 
Eq. (26) should be replaced by γ/nw.  

The ratio m(γr) calculated as a function of the 
detector field of view γr for these conditions is shown 
in Figs. 2–5. Figure 2 depicts the behavior of the 
function m(γr) at different optical thickness of the 
layer τ = 1–4 for the scattering phase function x(θ) 
shown in Fig. 1. The combination of the 
microstructure parameters (ν = 2, rm = 10 µm, 
p = 0.2), for which the dependences m(γr) shown in 
Fig. 2 were obtained, corresponds to the situation 
that the b-fraction of the suspended particles plays 
the leading role in the scattering phase function both 
in the backward direction 

14 and in the small-angle 
region. 

16  
 

 
 
 
 
 
 
 
 

 

 
 

Fig. 2. Effect of the optical thickness on the ratio m(γr) 
neglecting (curves 1–4) and taking into account (curves 1′–
4′) the backscattering anisotropy: τ = 1 (1, 1′), 2 (2, 2′),  
3 (3, 3′), and 4 (4, 4′). 

 

As can be seen from Fig. 2, the anisotropy in 
the backward direction, caused by the diffraction 
peak in the scattering phase function xb(θ) at the angle 
θ1 = 179.1°, manifests itself in m(γr) at sufficiently 
large γr. 

The maximum discrepancy between the curves 
m(γr) calculated with and without the regard for the 
backscattering anisotropy is observed at the largest 
values of the considered field of views 
(γr = 15 mrad). It amounts to 4.4% at the low optical 
density of the layer (τ = 1) and achieves about 12% 
as τ increases up to 4. This increase in the role of the 
backscattering anisotropy with the increasing optical 

a 

b 
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thickness has a simple physical explanation, 
connected with the broadening of SFB Esc(ρ), which 
serves a weighting function of the scattering phase 
function xπ(γ) in Eq. (26), due to multiple scattering. 
 The effect of the backscattering anisotropy can be 
neglected for the angles γr < 10.5 mrad. The error in 
this case does not exceed 3% at τ < 4.  

Figure 3 illustrates the effect of the disperse 
composition of the b-fraction of the suspended matter 
on the behavior of m(γr) with the backscattering 
anisotropy taken into account. In this case, two 
opposite tendencies should be taken into account. As 
was shown in Ref. 14, the contribution coming from 
the b-fraction particles to the backscatter increases 
with the increase of their size. As this takes place, 
the amplitude of the diffraction peak near the 
backward direction grows, and the position of the 
peak shifts toward the scattering angle θ = 180°. 
These factors obviously enhance the effect of the 
backscattering anisotropy on the angular dependence 
of m(γr) with the increase of the modal radius rm of 
the b-fraction particles. 

 

 
Fig. 3. The ratio m(γr), calculated with (curves 1′–3′)  and 
without (curves 1–3) the regard for the backscattering 
anisotropy, at the modal radius of the b-fraction particles 
rm = 8 (1, 1′), 10 (2, 2′), and 12 µm (3, 3′). 

 

At the same time, it should be kept in mind that 
the growth of the particles leads to narrowing of SFB 
Esc(ρ) due to the increasing forward peak of the 
small-angle scattering phase function. As a result, the 
anisotropic part of xπ(γ) will be present in the 
dependence m(γr) (26) with the smaller weight. The 
resultant effect of these factors on the variability of 
m(γr) can be estimated only numerically (a typical 
case is shown in Fig. 3).  

It can be seen from Fig. 3 that if the modal 
particle radius rm does not exceed 8 µm, the effect of 
the backscattering anisotropy on the behavior of the 
function m(γr) is negligibly small all over the 
considered range of the field of view γr. The 
approximation of the isotropic backscatter is 
acceptable, within the error smaller than 2.5% for 

γr < 9 mrad for particles with the modal radius 
rm ≤ 12 µm. For large γr, the neglect of 
backscattering anisotropy leads to the increase of the 
error in the calculation of m(γr), achieving, for 
example, 15% at γr = 15 mrad and rm = 12 µm.  

Figure 4 illustrates the effect of the 
microstructure parameters of the t-fraction particles 
on the behavior of m(γr). As was shown in Ref. 14, 
the scattering phase function of the t-fraction 
particles near the backward direction is quasi-
isotropic, and the increase of the parameter ν in the 
distribution (28) leads to the increasing role of this 
fraction in the backscatter. As a result (Fig. 4), at 
large values of ν the backscattering anisotropy only 
little manifests itself in the behavior of the function 
m(γr). From analysis of the data presented in Fig. 4 
it follows that in the case under consideration, as 
before, the effect of the backscattering anisotropy for 
the fields of view γr < 11 mrad can be neglected. The 
error in this case is no higher than 3%. 
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Fig. 4. Ratio m(γr), neglecting (solid curves) and taking 
into account (dashed curves) the backscattering anisotropy 
with the parameter ν of the size distribution of the  
t-fraction particles: ν = 1 (1, 1′), 2 (2, 2′), 2.5 (3, 3′), and  
3 (4, 4′). 

 
Finally, Fig. 5 shows the parametric family of 

the functions m(γr), obtained at different contribution 
p [Eq. (30)] of the t-fraction particles to the light 
scattering. From the viewpoint of the effect of the 
backscattering anisotropy on the dependences m(γr), 
this example is interesting, because it clearly 
demonstrates the opposite tendencies, connected with 
the role of the b-fraction in the forward and 
backward scattering. 

Indeed, at p = 0, that is, when the mixture is 
formed by large particles of organic origin, the 
scattering phase function has the most pronounced 
anisotropy both in the small-angle region 

16 and at 
scattering at angles near θ = 180° (see Fig. 1,  
curve 2). However, because of the strong forward 
peak of the small-angle part of the scattering phase 
function, the width of the function Esc(ρ) appears 
insufficient for the diffraction peak of the scattering 
phase function xπ(γ), observed in Fig. 1, to affect the 
formation of the function m(γr) (26). As a result, the 
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discrepancy between the curves 1 and 1′ in Fig. 5, 
obtained, respectively, without and with the regard 
for the angular dependence xπ(γ) at p = 0, proves to 
be insignificant (less than 1.6%). 
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Fig. 5. The ratio γ
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( ),m  calculated with (dashed curves) 

and without (solid curves) the regard for the backscattering 
anisotropy at different relative contributions p of the 
mineral fraction to the total light extinction: p = 0 (1, 1′), 
0.2 (2, 2′), 0.5 (3, 3′), and 0.7 (4, 4′). 
 

The appearance of the fine t-fraction in the 
suspended matter leads to broadening of the small-
angle peak of the scattering phase function and SFB 
Esc(ρ) and, as a consequence, to a larger contribution 
of the diffraction peak of the scattering phase 
function xπ(γ) at the periphery of the angular 
dependence m(γr). As can be seen from the 
comparison of the curves 2 and 2′ in Fig. 5, this 
factor begins to play a marked role already at small 
values of the parameter p. However, further increase 
of the parameter p from 0.2 to 0.7 does not affect 
significantly the role of the backscattering anisotropy 
in the behavior of the function m(γr). This is 
connected with the fact that as the parameter p 
increases, the scattering phase function xπ(γ) becomes 
increasingly smoother 

14 and compensates for this 
effect in the behavior m(γr). The maximum difference 
between the dependences m(γr), calculated with and 
without the regard for the angular dependence xπ(γ), 
amounts to 5–7% at 0.2 ≤ p ≤ 0.7. Thus, in the most 
cases the relation between the b- and t-fractions 
proves to be an insignificant factor when taking into 
account the backscattering anisotropy in the behavior 
of the function m(γr).  

Conclusions 

Within the framework of the small-angle 
approximation of the radiative-transfer theory, a new 
equation is obtained for the lidar return power taking 
into account the multiple scattering at small angles 
and the single anisotropic scattering at large 
scattering angles. The account for the single 
scattering at large angles was based on the solution 

of RTE with the source density function in the form 
of the integral of the small-angle Green's function 
multiplied by the large-angle scattering phase 
function over the solid angle. The RTE solution has 
been obtained with the use of the Green's function 
method and the optical reciprocity theorem.  

The principal assumption used in the derivation of 
the new lidar equation consisted in the δ-
approximation of the Green's function in terms of the 
angular coordinate. Due to this assumption, we 
significantly simplified the solution, which reduces in 
this case to the calculation of the irradiance 
distribution in the medium. 

The assumption of the backscattering isotropy 
considerably simplifies the solution of the inverse 
problems of laser sensing of dense media taking into 
account multiple scattering. The theory developed 
allows the validity of this assumption to be checked 
for schemes and conditions of lidar experiments.  

To test this approach, in this paper the 
approximation of the isotropic backscattering phase 
function is applied to the description of the lidar 
return signal during the airborne sensing of 
seawaters. For this purpose, the scattering properties 
were simulated by calculating the scattering phase 
functions in the case of light scattering by seawaters 
containing suspended particles of two fractions:  
of mineral and organic origin. The anisotropy of  
the scattering phase function showed itself in  
the diffraction peak, whose amplitude and position  
in the angular range θ > 179° depended on the 
microstructure parameters of the suspended matter. 
 The analysis of the results of the calculations 
performed showed that  

1. In describing lidar return signals with the 
field of view ranging within γr < 9–11.5 mrad, it is 
possible to use the approximation of the isotropic 
backscattering phase function; the error in this case 
does not exceed 2.5–3% with the microstructure 
parameters of the disperse suspended matter varying 
widely and the optical thickness τ < 4. 

2. The larger the modal radius of the b-fraction 
particles and the higher the optical thickness of the 
medium, the more significant is the increase in the 
effect of the backscattering anisotropy with the 
increasing receiver’s field of view. 

3. The role of the backscattering anisotropy in 
the formation of the lidar return signals weakly 
depends on the relation between the contributions of 
the two fractions to the total scattering coefficient.  
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