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Stellar scintillations during the occultation by the Earth's atmosphere are analyzed. Factors
determining the accuracy of the phase screen method as applied to description of a wave propagated
through a distorting layer in the case of spatial dependence of the regular component of refractive index
are determined. The corresponding errors are estimated and a possible way of compensating for them
is proposed.

Introduction

In observing stellar occultation by the Earth's
atmosphere from onboard a space station, random
variations of the intensity of radiation received occur
along with the monotonic decrease in the stellar
brightness.1–3 These are associated with the scattering
of stellar radiation by atmospheric inhomogeneities and
carry significant information about the structure of air
density fluctuations in the middle atmosphere.

The approximation of a phase screen (PS) is
usually used to study scintillation spectra.4,5 This
approximation is believed to provide for good accuracy
of description of the electromagnetic field when the
receiver is far from the layer studied. However, this
approximation neglects that the influence of refraction
on the characteristics of scattered field depends on
the position of inhomogeneities in the layer. These
characteristics include, in particular, the scattering
angle and the ratio of the spatial scale of
inhomogeneities and the size of the wave tube.

The aim of this paper is to estimate the errors
caused by the neglect of this dependence. In this paper,
the equations are derived, in the first approximation
of the method of smooth perturbations (MSP), for the
spectrum of correlation function of the wave intensity
after propagation through a turbulent layer with
regular refraction. The errors in the PS approximation
due to refraction in the Earth's atmosphere at
altitudes of 25–75 km are estimated.

Scintillation spectra in the first
approximation of MSP

Consider the propagation of electromagnetic
radiation from a remote source through a turbulent
layer with regular refraction. Assume that the source
is spaced far enough from the layer rS >>∆2/λ, where
rS is the separation between the source and the layer;

∆ is the transverse dimension of the layer; λ is the
wavelength, so that the wave with the harmonic time
dependence (–iωt) and the wave number k0 = 2π/λ,
incident on the outer boundary of the layer under
study, can be assumed plane. The refractive index in
the layer nt(r) = n(r) + δn(r) is a superposition of the
regular n(r) and random δn(r) components, depending
on the radius vector r of a current point. Assume that
the spatial scale of variation of the regular component
H is large enough for the inequality L0 <<H2/λ to
hold. Here L0 is the separation between the receiver
and the distorting layer. In the absence of refractive
index fluctuations δn(r) ≡ 0, this allows the field at
the observation point R0 to be described in the
approximation of geometric optics (GO). The random
field of refractive index inhomogeneities will be
characterized by the correlation function

1 2 1 2( , ) ( ) ( )nB n n− = δ δR r r r r  (1)

assuming its dependence on the variable R =
= (r1 + r2)/2 to be much weaker than that on the
coordinate difference r1 – r2. At r1 – r2> H it
becomes negligibly weak. In addition, assume that
the variance of field fluctuations at the observation
point is small.

The non-local character of the distorting layer
will be taken into account within the framework of
the first approximation of the method of smooth
perturbations. With the backscattering neglected, the
components of the electric field at the point r can be
represented in the form6:
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where U0(r) and G0(r, r′) are the electric field and
the Green's function of a point source in an unbounded
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medium in the absence of refractive index fluctuations.
In the GO approximation, they can be presented as
follows:
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are eikonals. The reasoning, similar to that

given in Ref. 6 for the case of a macroscopically
isotropic and homogeneous medium, allows us to
restrict our consideration to zero-order terms for the
amplitudes and second-order terms for the phase
changes in the Taylor series of the integrand in Eq. (2)
in terms of the coordinates, transverse to the beam.
The substitution of this series into Eq. (2) yields
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In this equation, the first integral is calculated over
the trajectory Σ of the ray, passed through the point
R0; r0, x, y are the projection of the current point r′
onto the trajectory and its transverse displacement.

The dyadic 0 0( , )F R r characterizes the additional phase
shift of the ray, which arrived at the observation point
r after scattering by an inhomogeneity at the point r′,
with respect to the ray, which arrived at the point r
along the trajectory ∑. Hereinafter the signs ⋅, ×,  :
denote the scalar, vector, and double scalar products;
the  omitted  sign  of  operation implies dyad product.

In calculating the correlation function
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of the intensity fluctuations δI(r) ≈ 2Reψ10(r), we
neglect variations of the amplitudes A0,G(r,r0) and the

components 0( , )F r r  at the size of inhomogeneities. It
is convenient to pass on from the correlation
functions to their Fourier transforms in terms of the
fast variables, that is, to the three-dimensional
spectrum
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and the two-dimensional spectrum
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(weak dependence on the component δr, parallel
to the ray at the detection point, is neglected).
Calculating the integrals over the directions, transverse
to the ray, in the straight and reciprocal spaces, we
obtain the following relation between the spectra:
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where 0 0( , )µ R r  is the matrix of affine transformation
of the wave tube cross section at the transition from
the point r0 to the point R0.

Errors of the PS approximation

The PS approximation neglects the dependence on
the coordinates of the current point 0r in the amplitude

functions A0(r0), AG(R0,r0) and dyadics 0 0( , ),F R r

0 0( , )µ R r and these coordinates are substituted by

those at the point r0PS of intersection of the ray L
and the phase screen. The errors, arising in this case,
can be divided into three classes.

First, the errors caused by the change of the
amplitude factor
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in the integrand. It should be noted that the factor

0 0det ( , )F R r  compensates for singularity of the
Green's function, so that the amplitude factor varies
quite slowly, as the receiver approaches the layer,
and has no singular point. The relative error does not
exceed
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where r0f, r0c are the ray Σ points, farthest from and
closest to the receiver. This error is independent of
the spatial frequency κ, and the condition ε1 << 1
corresponds to the approximation of an optically thin
layer.

Second, the error can be attributed to variation
of the wave tube cross section in the distorting layer
and, consequently, to variation of the ratio between
the tube size and the spatial scale of inhomogeneities.
This leads to spectrum blurring and to the error
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which increases in the direct proportion to κ. When
estimating this error, the main factor is how strongly
the spectrum of refractive index inhomogeneities
depends on the spatial frequency.

Third, the refraction in the layer leads to an
increase in the angle of scattering by inhomogeneities,
lying in the layer part remote from the receiver, and,
consequently, in the Fresnel scale. This restricts the
range of the spatial frequencies, within which the PS
approximation is applicable, as follows:
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At higher spatial frequencies, the maxima and minima
of the diffraction patterns from inhomogeneities of
the same size, but lying on the ray Σ in different
parts of the layer, superpose. The singularity of the

diagonal components of the dyadic 0 0( , )F R r  at
R0 = r0 leads to quick deterioration of the accuracy
of PS approximation, as the receiver approaches the
layer, similarly to the case of scintillations in the
absence of refraction.

Thus, fulfillment of the condition of optically
thin layer is insufficient for the use of the PS
approximation. At least two more conditions,
restricting the studied range of the spectrum and the
structure of refractive index inhomogeneities, should
be fulfilled as well.

PS approximation at occultation
observations of scintillations

Let us assess the validity of using the PS
approximation to the investigation of stellar
scintillation spectra when the stars are occulted by
the Earth's atmosphere. The geometry of occultation
observation is shown in Fig. 1.

Fig. 1. Geometry of the problem.

Propagation of the electromagnetic field will be
described in the spherical system of coordinates
(r, θ, ϕ) with the origin at the center of the Earth,
and the ray θ = π corresponds to the direction toward
the source. The regular part of the refractive index
n(r) = 1 + N(r), which is assumed independent of

the angular coordinates, leads to the deflection of the
ray, while the random component δn(r) leads to the
development of fluctuations in the electromagnetic
field of the wave. The dependence of regular
component on the wavelength λ0 and the mean
temperature 〈T(r)〉 (K) and pressure 〈P(r)〉 (mbar) is
described by the well known equation7:
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where the parameter Λ = 87 µm characterizes the
atmospheric dispersion in the wavelength range
λ0 ∈ 0.3–20 µm. The ratio of the mean pressure and
temperature decreases with height by the close-to-
exponential law with the spatial scale H, lying in the
range 6 ⋅ 103–8 ⋅ 103 m, which allows the radial
dependence of the regular component to be
approximated as:

0 l( ) exp[( )/ ],N r N r R H= −  (11)

where Rl ≈ 6.4 ⋅ 106 m is the height of the bottom
boundary of the studied atmospheric layer; N0 ≈ 2 ⋅ 10–5

is the refractive index at this boundary. It can be
seen that for waves from the optical region the
condition L0 <<H2/λ is fulfilled, if the distance
between the layer and the receiver L0 does not exceed
several thousand kilometers. This allows us to use the
geometric-optics description for the regular component
of the field. The ray Σ lies in the plane ϕ = const and
is determined as

p( , ) ( ) ( , )r rθ ρ = θ ρ ± ∆θ ρ ,

p

2 2 2
( )

d
( , )

( ) / 1

r

h

r
r

r n r rρ

∆θ ρ =
ρ −∫ , (12)

where ρ is the impact parameter (the distance
between the ray and the axis θ = π before entering
the atmosphere), the height of the perigee point hp(ρ)
is the solution of the equation n(hp)hp = ρ, and its
angular coordinate is specified as:
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Let the receiver be at the point R0 = (R0, Θ, 0).
Then the impact parameters of the ray, arriving at
the detection point, can be found from the equation
Θ = θ(R0, ρ). Assume that the aperture is small
enough as compared to both the correlation length of
radiation intensity fluctuations and the spatial scale
of variations in the amplitude of the regular
component and neglect its integrating effect.

To determine the functions, entering into
Eq. (6), let us use the results of Ref. 8, valid for a
spherically symmetric distorting layer:
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The subscripts of the function θ(r, ρ) denote
differentiation with respect to the corresponding
variable.

The use of cumbersome equations (14)–(16) is
reasonable only in the case, when the simpler
equations, obtained in Refs. 4 and 5 within the
framework of the phase screen method, give a
significant error. Therefore, it is important to
determine the applicability domain of the assumptions,
which lie  in  the foundation of this method, namely:

1) The trajectory Σ can be thought a straight-
line in the height range r ∈ [hp, hp + 2H], which is
the major contributor to the formation of intensity
fluctuations.

2) The correlation function of inhomogeneities of
air density can be calculated by the equations for the
Cartesian coordinate system.

3) The PS approximation is applicable to the
description of scintillations.

The curvature length of the trajectory Σ takes its
minimum value Rc ≅ H/N(hp) ≥ 3 ⋅ 108 m at the perigee
point, which is 100 times larger than the height Rl.
The neglect of the trajectory deflection leads to the
error in determination of the height of the current
point as large as 3HRl/Rc ≅ 300 m. At such scales,
the relative changes of the amplitude factor (14), as
well as the functions (15) and (16), do not exceed 1–

2%, which is much smaller than their relative variation
along the ray (∼10–15%). Therefore, the deflection
can be neglected, and the ray part inside the
atmospheric layer studied can be described by the
following approximate equations:
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where the upper sign corresponds to the ray, having
passed through the perigee point; otherwise, the
lower sign should be taken.

At the same time, the neglect of the change in
the direction of the wave vector in the argument of the
spectrum ( , )nB r q%  can, in principle, lead to significant
inaccuracy in the case of strong anisotropy of the
correlation function of the refractive index
inhomogeneities. Taking into account that the angle
between the ray and the radius vector of the current

point is arcsin
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ρ

α = , the second argument of the

spectrum ( , )nB r q%  should be presented as follows:
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where the sign is selected in the same way as in
Eqs. (17)–(19).

In Refs. 2 and 3 it has been shown that the
large-scale inhomogeneities of the refractive index at
the heights of 25–75 km are oblate in the radial
direction, whereas the small-scale component is
isotropic. The spectrum of inhomogeneities is a
superposition of the functions of the form

( )( , ) ,nB Fδ = ΚR r R% ,

{ }2: r rθ θ ϕ ϕΚ = δ δ + + ηr r e e e e e e  (21)

with different values of the anisotropy parameter η.
For the isotropic component, it is equal to unity, and
the large-scale component is characterized by the
values η > 30.

In the case of neglect of the ray deflection, the
deviation of the ellipsoid, at which the function of
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the form (21) takes equal values, from the sphere,
whose radius h is equal to the ellipsoid major semi-
axis, at the edges of the studied layer is

( ){ }2 21 1/ 1h − + η ε , where p c2 ( )/Hh Rε = ρ  is the

angle of the ray turn in the layer with respect to its
straight-line trajectory. Assuming h = l0, where l0 is
the characteristic spatial scale of fluctuations in the
plane (eϕ, eθ), we obtain the estimate for the upper
boundary of the anisotropy parameter:

3
max c p/ ( ) 10 .R Hhη = ρ ∼

The ray deflection can be neglected, if the anisotropy
parameter of spatial inhomogeneities does not exceed
ηmax.

It is also necessary to estimate possible distortions
associated with the neglect of changes in the unit
vectors of the spherical coordinate system within the
spatial scale of inhomogeneities. Assume that, as the
current point shifts to distances not exceeding l0, the
error in determination of the parameter K is within l0
and find the upper boundary for the anisotropy
parameter in the form ηmax = R0/l0 ∼ 104. The
distortions will be significant at maxη > η .

It is convenient to analyze the distortions
connected with the PS approximation, assuming that
the spectrum of fluctuations of the refractive index is
an isotropic delta function 0 0( , ) (| |)nB = δ −r q q q% . The
PS approximation keeps its singularity in the form of
the one-dimensional delta function, but transforms
the region, in which this function is nonzero, into an
ellipse:
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whereas the allowance for the extension of the
distorting layer removes the singularity, distributing
it over the region
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where Σ is the ray part within the layer. Thus, the
refraction leads to blurring of the spectrum with the
characteristic scale in the reciprocal space,
proportional to the spatial frequency q0. Its relative

value is different for the longitudinal eϕ and transverse
eϕ × k(R0) directions:
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where rmax = hp(ρ) + 3H is the height of the top
boundary of the layer. The estimation of these
parameters for the height of 30 km (perigee point)
above the Earth's surface gives δ7 ∼ 1%, δ⊥ ∼ 10%.

The assumption that the amplitude factor (14) is
constant on the integration path gives the relative error
of the order of l/L0, where l is the distance between
the perigee point and the point of the trajectory Σ on
the boundary of the region that actively affects the
formation of the field of fluctuations (r = hp + 2H).
The error does not exceed 10–20% when interpreting
the results of observation from onboard a space
station at L0 > 1000 km (Fig. 2).

Fig. 2. Relative error in the amplitude factor; λ = 0.7 µm;
L0 = 500 (1), 1000 (2), 2000 (3), 3000 (4), 5000 km (5).

Of particular interest is the behavior of the
functions (16). The condition (9) transforms into the
equation
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from which we can find the estimates for the
boundary values of the spatial frequencies ,q q⊥P :
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The parameters q⊥,||max are the upper boundaries of the
region of spatial frequencies, in which the change in
the radius of the first Fresnel zone inside the layer
can be neglected. As the distance between the
receiver and the layer increases, the behavior of the
boundaries q⊥,||max becomes opposite. In this case, q||max

increases quickly and becomes infinite at the caustic
Θ = 0. For the distances L0 ∼ 1000 km, characteristic
of observation from onboard a space station, q||max ∼
∼ 200 m–1. The boundary q⊥max, on the contrary,
decreases slowly as the distance from the layer
increases. It is ∼7 m–1 at the distance of 1000 km
from the layer (Fig. 3). The presence of the upper
boundary is connected with the fact that the angle of
scattering from the inhomogeneities, lying before the
perigee point, changes under the effect of regular
refraction, and the relative change increases with the
decrease in the size of the inhomogeneities.

Fig. 3. The upper boundary of the applicability range of the
PS approximation for the transverse spatial frequency;
λ = 0.7 µm, L0 = 500 (1), 1000 (2), 2000 (3), 3000 (4),
5000 km (5).

Upon the propagation through the atmosphere, the
rays scattered by identical inhomogeneities, located
in different parts of the layer, diverge at different
angles, which gives rise to errors, when the receiver
is far from the layer. It should be noted that this
effect is significant for spatial frequencies, exceeding
the Fresnel scale, and the relative difference between
the upper boundary of the PS applicability range and
the Fresnel scale is inversely proportional to the
change in the wave tube cross section inside the
layer. The behavior of the boundaries q⊥,||max as  a
function of the distance to the receiver is mostly
determined by the transformation of the wave tube
due to refraction. The compression of the spectrum in
the direction eϕ × k(R0) determines the decrease of
q⊥max, as well as the expansion of the spectrum along
eϕ causes the growth of q||max.

Conclusions

In this paper, we have considered the causes for
the decrease in the accuracy of the PS approximation
in the analysis of intensity fluctuations of an
electromagnetic wave transmitted through the
turbulent layer of the medium with the variable (in

space) mean refractive index. It has been found that
the following factors are most significant:

1. The dependence of the amplitude of the
secondary waves on the position of their source;

2. The change in the amplitude of the primary
wave over the layer due to refraction;

3. The change in the wave tube cross section
inside the layer;

4. The change in the angle of scattering from
inhomogeneities due to refraction.

Their influence on the characteristics of the
transmitted wave is quite various. The allowance for
the first and second factors implies the appearance of
the error, whose relative value is independent of both
the spatial frequency and the shape of the spectrum
of refractive index inhomogeneities. As the distance
between the observation point and the distorting
layer increases, this error does not vanish in contrast
to the case of layers without refraction. A consequence
of the third factor is blurring of the spectrum of the
refractive index inhomogeneities, whose scale is
directly proportional to the spatial frequency. The
strength of this effect depends on how sharp is the
dependence of the spectrum of refractive index
inhomogeneities on the spatial frequency. The
influence of the fourth factor consists in blurring of
oscillations in the spectrum of intensity fluctuations
at the spatial frequencies, exceeding the Fresnel
scale. The obtained estimates of the errors of the PS
approximation as applied to the analysis of stellar
scintillation spectra observed during star occultation
by the Earth's atmosphere indicate that there is no
sense in using much more cumbersome equations of
the method of smooth perturbations.
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