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Spontaneous fluorescence of molecules induced by laser pulses of different duration in a
microparticle is considered theoretically. Equations describing the dependence of the power and the
spectral cross section of a single-photon spontaneous fluorescence from the microparticle on the
particle volume, the concentration of active molecules, and the spectral characteristics of the incident
and emitted light are obtained by the method of open-resonator theory with the field vectors
expanded in series of quasinormal vibrational eigenmodes of a dielectric sphere. It is shown that the
spontaneous fluorescence cross section for the particle excited by a short (t << τs, where τs is the
characteristic time of spontaneous fluorescence) and long (t >> τs) laser pulses has the same form
provided that it is determined from the energy and power relations, respectively. At the same time,
the spectral cross section of a single-photon process can exceed by more than ten times the cross section
of spontaneous emission from the same volume of a bulk medium. This excess is proportional to the
product of the factors accounting for the focusing properties of the particle and its characteristics as
a dielectric microresonator.

Introduction
A weakly absorbing spherical dielectric

microparticle with the size essentially exceeding the
wavelength of incident radiation can be considered as
an open optical resonator. Such a resonator has its
own system of electromagnetic vibrational modes
with high Q factor, reaching ∼106 for liquid particles.
The optics of such microresonators is of great interest
for diagnostics of aerosols, opto-electronics, and laser
physics.1 The phenomenon of spontaneous emission of
atoms and molecules, placed in a high-Q resonator, is
traditionally studied by classical and quantum
electrodynamics2,3 with the emphasis on the aspects
associated with the quantum characteristics of
spontaneous emission of molecules at the resonator
modes.

The macroscopic optics of emitting dipole was
investigated in Refs. 4–6, where the equations were
derived for the power and angular diagram of Raman
scattering and spontaneous fluorescence of active
molecules in spherical particles in the regime of their
stationary excitation by a laser radiation. In the
theoretical model used, active fluorophore molecules
were represented by a set of classical dipoles,
distributed arbitrarily inside a particle, and excited
by the electric field of the incident wave. The
efficiency of excitation of every dipole is
characterized by the effective polarizability of the
medium at the point of its position inside the particle
and is proportional to the amplitude of the principal
wave. The total field of spontaneous emission is a
sum of the collective field of emission from the
dipoles and some effective field caused by the
presence of the particle boundary. Based on the
approach developed, Refs. 4–6 reported the results of

numerical calculations of these parameters and the
analytical equations derived in the approximation of
optically small particles.

In recent years, great interest has been shown in
the use of significantly nonstationary sources for
excitation of molecular fluorescence, such as
picosecond and femtosecond lasers.

The excitation of molecules of an active
substance in a spherical resonator exhibits strong
spatial inhomogeneity of the pumping optical field,
manifesting itself in the inhomogeneous (over the
volume) profile of the field of spontaneous emission.
In case of increasing power density of the radiation
incident on the particle, the probability of
multiphoton absorption, in addition to single-photon
transitions, in molecules increases considerably.
Under these conditions, the function of the source,
exciting the spontaneous emission, becomes even
more inhomogeneous.7 The fluorescence induced due
to one-, two-, and three-photon absorption in
coumarin-doped ethanol drops irradiated by
femtosecond pulses was observed experimentally in
Ref. 6. It was found that the fluorescence is
enhanced in the backward direction, opposite to the
incident pumping radiation. These results were
interpreted within the framework of the stationary
model, in which the power (integral over angles) of
spontaneous fluorescence from the drops Ps is
expressed by the dependence ( )

s s L,
k kP I∝ σ  where

( )
s
kσ  is the cross section of k-photon absorption

(k = 1, 2, 3…); IL is the intensity of the pumping
radiation in the particle. In this connection, it is
interesting to study this dependence using
nonstationary excitation of molecular fluorescence in
a particle. For interpretation of physical and
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numerical experiments, it is also important to obtain
analytical equations, allowing the cross section or
power of spontaneous fluorescence to be estimated in
the case of microparticles irradiated by short and
long laser pulses.

In this paper, within the framework of the
method of nonstationary wave equation for the electric
field strength vector, we have considered theoretically
single-photon spontaneous fluorescence of active
molecules in a microparticle excited by macroscopic
polarization at different duration of the pump pulse
tp. We used the expansion of light fields in terms of
eigenfunctions of the stationary problem, which are
the quasi-normal vibrational modes of a dielectric
sphere.1 Thus, the equations have been obtained, which
establish the dependence of the spectral cross section of
spontaneous fluorescence on the parameters of the
problem: particle size and optical characteristics,
spectral line width of the incident and emitted light,
and the concentration of fluorescing molecules.

Macroscopic optics of spontaneous
molecular emission in a microresonator

Consider the following formulation of the
problem. A weakly absorbing spherical particle of
radius a0, containing some amount of a fluorescent
(active) substance, is exposed to a plane
electromagnetic wave with the central frequency ωL.
The fluorophore molecules are assumed to be
distributed homogeneously over the particle volume
and having the concentration C0, which is much
lower than the concentration of molecules of the
main substance. Consider the regime of nonstationary
excitation of the fluorophore: tp << τs, when the
molecules absorb light quanta at the principal
frequency during the pump pulse, but emit for a
longer period. Thus, along with the radiation at the
frequency of the incident light (primary radiation),
the radiation at the frequencies of spontaneous
transitions (secondary radiation) is also present in the
microparticle–resonator.

For the periods, longer than the initial pulse
duration, the emission of active molecules is largely
determined by spontaneous transitions. The only
exclusion is the zone of spatial localization of high-Q
particle eigenmodes – whispering gallery modes,
where the field of the incident light wave stays for a
rather long time, about nanoseconds.8 Under these
conditions, stimulated emission can take place within
the contour of spontaneous emission. However, the
intensity of the pump radiation in such modes is
usually low, unless their resonance excitation takes
place, and therefore we believe that the influence of
stimulated processes in the whispering gallery modes
on the spontaneous emission is insignificant.

Taking the above-said into account, we can
write the wave equation for the complex vector of
the electric field strength of spontaneous radiation
inside the particle Es(r; t):

2
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where γa, εa are the conductivity and permittivity of
the particulate matter; c is the speed of light in
vacuum; Ps is the medium polarization vector at the
frequency of the secondary wave ωs. The medium is
assumed non-magnetic and isotopic; dispersion effects
are ignored. The nonlinear interaction of waves is
assumed weak, and the pumping depletion is
neglected. The polarization Ps in the right-hand side
of Eq. (1) accounts for the field of molecular
emission at the frequency of the dipole transition
considered. In addition, effective polarization of the
medium doped with active molecules occurs at the
frequency of the secondary wave, which is taken into
account by the second term in the left-hand side of
Eq. (1). Thus, we can speak about the existence of
two fields of the secondary emission inside a particle,
one of which is formed by the dipole emission, while
the other one relates to the medium permittivity. In
this respect, the formulation of the problem is
equivalent to that of the approach used in Ref. 4.
 Let us now present the electric field vector of
the nonlinear wave as a series expansion in terms of
the eigenfunctions of the particle–resonator

TE,TH( )nE r , describing the spatial profile of the fields
of vibrational modes with TE- and TH-polarization

and eigenfrequencies TE,TH:nω

TE TH
s( ; ) ( ) ( ) ( ) ( ) ,n n n n

n

t A t iB t = − ∑E r E r E r   (2)

where the coefficients An and Bn account for the
contribution of each eigenmode to the total field.9

The functions TE,TH( )nE r , forming an orthogonal system
within a sphere, satisfy the stationary homogeneous
Maxwell equations:

( )2TE,TH TE,TH 2 TE,TH
arot rot ( ) ( ) 0n n nc− ε ω =E r E r  (3)

and can be expressed through the vector spherical
harmonics. Note that if spherical harmonics are used
in Eq. (2), the index n actually consists of three
indices: the mode number nθ, the radial order nr, and
the azimuth index nm.

The substitution of Eq. (2) into Eq. (1) after
some transformations (see Ref. 9) leads to a system of
ordinary differential equations for the coefficients of
the secondary wave. Consider only the wave with ÒÅ-
polarization, assuming that for ÒH modes the analysis
is quite analogous. The corresponding equations for
the amplitudes have the form

2
2

2

d d
( ) 2 ( ) ( ) ( ),

dd
n n n n n nA t A t A t J t

tt
+ Γ + ω =  (4)

where the “driving force” is expressed as
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Here Va is the particle volume; Γn is the factor of mode
attenuation due to absorption by the particulate matter
and losses at the exit of radiation through the
particle surface. The integral in the right-hand side of
this equation accounts for the spatial overlapping of
each eigenmode in the secondary wave field with the
field of the polarization source inside the particle.
The larger is this overlap, the more active is the
excitation of the mode of the secondary field.

The particular solution of the inhomogeneous
equation (4), representing only the vibrations under
the effect of “external” force, can be written as

( ) ( ) sin
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t
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A t J t t e t t′−Γ′ ′ ′= − ω
ω ∫  (6)

where ω = ω − Γ ω2 21n n n n  is the frequency of free
vibrations of the mode with the loss taken into
account. Taking Eq. (5) into account and integrating
by parts, we can transform the solution (6), under
the condition Ps(t = 0) = 0, as:
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It follows from this equation that the time
dependence of the amplitude of the particle
eigenmode includes an "instantaneous" part, showing
itself during the pulse at the principal frequency
(first term in the square brackets), and the time-
integrated contribution (second term).

In choosing the physical model of medium
polarization in the case of spontaneous transitions
Ps(r; t), we take into consideration the integral
character of the influence of spatial changes in
polarization on the amplitude of the secondary wave
mode An, which is expressed by Eq. (5). The
macroscopic polarization Ps(r; t) of a small medium
volume δV, characterized by the radius-vector r, will
be considered as a sum of the dipole moments of
individual molecules within this volume:

(3)
s( ; ) ( ) ( ),

N

j j j

j

t d t= δ −∑P r p r r  (8)

where N is the number of active (in terms of the
dipole transition considered) molecules; pj is the
vector, characterizing the dipole orientation in space
(pj= 1); δ(3)(r – rj) is the Dirac delta in the 3D
space. The excitation of dipoles is known to be
caused by quantum fluctuations of the field (the so-
called zero fluctuations of the field of vacuum10,11),

and the law of their emission can be represented in
the form

( )0 0 0( ) exp ,jd t d i t t= ω − Γ (9)

where d0 is the dipole moment amplitude, determined
through the quantum mean of the off-diagonal dipole
matrix elements of the molecule; ω0 is the frequency
of the dipole transition in the molecule; Γ0 = 1/T2 is
the attenuation factor; T2 is the cross-relaxation time
of the dipole transition.

In Eq. (8) for the spontaneous macroscopic
polarization, the spatial position of the dipole,
characterized by the vector rj, and its orientation
(vector pj) are random parameters. Thus, Ps(r; t) is a
realization of the random field caused by fluctuations
of its parameters. The amplitude of the light field in
the mode of the microresonator, functionally
dependent on Ps(r; t), is, in its turn, a random
realization of fluctuations of these parameters. Define
the operation of averaging of an arbitrary function f
over random realizations of the characteristics rj and
pj as follows:
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where dΩ is the solid angle element. Equation (10)
means that the statistical averaging is carried out
over the position with the uniform probability
density 1/δV and over orientations with the uniform
probability density 1/4π.

After the substitution of Eq. (8) into Eq. (7)
and the use of Eq. (10), we obtain the following
equation for the square amplitude of the eigenmode
of nonlinear spontaneous-emission wave field:
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where γn = Γn + Γ0 is the attenuation factor of the
secondary field mode in the resonator;
C(r; t) = N(r; t)/δV is the concentration of excited
molecules of the active substance, depending on  the
spatial coordinates and time. Calculating the internal
integral over time in the right-hand side of Eq. (11)
and rejecting the terms with the time dependence in
the form ω + ω0exp{ ( ) }ni t , we obtain:
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Here

( )= ω ∆ω + γ
) 2 2 2

n n n ng

characterizes the shape of the spontaneous emission
line in the resonator;

( ) ( )( )= ∆ω ∆ω + γ ∆ω( ) sin cosn n n n nF t t t ; ∆ω = ω − ω)0n n.

It follows from Eq. (12) that the instantaneous
component of the intensity of the secondary field
mode in the particle attenuates for the cross-
relaxation time of the dipole transition and does not
depend on the Q-factor for this mode. At the same
time, the cumulative contribution of spontaneous
transitions, which is present in Eq. (12), at the
previous instants contains the spectral function,
associated with the resonator properties of the particle
and indicating that the square amplitude of the
spontaneous emission field mode is maximum at the
exact resonance of the mode frequency with the
frequency of a molecular transition. In the further
analysis, we omit the second term in the right-hand
side of Eq. (12) because it is proportional to the
frequency detuning of the eigenmode ∆ωn  and,
consequently, it is negligibly small near the molecular
resonance.

The number of emitting dipoles N(r; t) at a
particular instant at this point of a particle is
determined by the physical mechanism of absorption
and emission of light quanta by the molecule and can
be found from the solution of the system of kinetic
equations for its active levels. For the two-level
scheme in the approximation of weak pumping, when
N2 << N1, where N1, N2 are the numbers of
molecules at the lower and upper levels of the
working transition, the corresponding equation has
the form:
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In Eq. (13)
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is the absorption cross-section of the one-photon
transition;

( )( )2 2
L 21 0 L 21g = Γ ω − ω + Γ

is the Lorenz line width of the transition; Γ21 is the
rate constant of the spontaneous transition; IL(r; t) is
the intensity of the laser radiation at the principal
frequency inside the particle. The solution of
Eq. (13) has the form of the convolution integral:
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For the field of the pump wave, we also use the
representation (2) and take into account that the
eigenfunctions are orthogonal, that is,
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(only TE-modes of the filed are considered as before).
Then after the substitution of ( ; )N tr  by the function
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where C0 is the concentration of active molecules;
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are the integrals of spatial overlapping of the modes
of the primary and secondary fields inside the
particle; kn = ωn/c.

Consider the case of short pumping of the
particle, when the inequality tp << (Γ21)

–1 is valid,
where tp is the laser pulse duration. Assume that the
medium is excited by a rectangular pulse and by the
time t = tp the population of the upper level of the
transition is maximum:
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is the intensity of the principal wave inside the
particle. Once the pumping is terminated (t > tp), N2
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decreases exponentially with time in accordance with
Eq. (13):

( )2 2 21 p( ; ) ( )exp ( ) .mN t N t t= −Γ −r r  (16)

Then the square amplitude of the mode of the
secondary field takes the following form (for t > tp):
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where it is taken into account for the attenuation
factor that:
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Introduce the following designation:
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which means the rate of conversion of the pump
energy absorbed by the active molecule into the
energy of spontaneous emission. Multiplying the left-
and right-hand sides of Eq. (17) by En(r′)

2
 and

performing summation over all modes of the
secondary field, we obtain the equation for the
intensity of the field of spontaneous emission in the
particle exposed to a short laser pulse:
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in the corresponding expansion of the energy density
of the incident wave field inside the particle.

Consider the energy characteristics of the field
of spontaneous emission outside the particle.
Following the law of energy conservation, the total
energy of spontaneous emission Ws, stored in the
microparticle–resonator for the whole observation
time, converts into the energy of the emitted wave
Wr minus the fraction Wab, converted into heat due
to the nonzero conductivity of the resonator matter:
Ws = Wr + Wab. Note that here we ignore the
energy loss of the spontaneous fluorescence field due
to the part of the macroscopic polarization of the
medium, associated with stimulated transitions in the
molecules, as well as due to the energy exchange
between the primary and secondary waves. These
issues will be considered in our following papers.

The radiation power in an individual mode of
the secondary field inside the microresonator Pn will
be determined through integration of Eq. (17) over
the particle volume for the fixed index n:
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Then the total energy of radiation spontaneously
emitted from inside the particle can be expressed as
follows:
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( )a a1 4n nη = − πγ ε ω) .

Introduce the total cross-section of spontaneous
emission of the particle for single-photon transitions
upon the nonstationary excitation (1)

sσ  as the ratio of
the energy of the secondary field Ws emitted to the
energy density of the incident pulse. For the
rectangular-shaped pump pulse we have:
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strength of the incident light wave.
In the regime of a long pump pulse, the

stationary solution for the power of spontaneous
emission into the mode follows from Eq. (15):
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π Γ ∑
which also leads to the equation, identical to
Eq. (22), for the cross section of stationary
spontaneous emission.

Thus, from the analysis of equations obtained we
can draw some conclusions.

The radiation emitted spontaneously by a
spherical particle–resonator has, in the general case,
a wider line as compared to that in an extended
medium γn ≥ Γ0. At a strong attenuation of modes in
the resonator, when Γn >>Γ0, the line width is
determined by the resonant properties of the particle

1( ) Q ,n ng −∆ω :  where Qn is the loaded Q of the
resonant mode.

At a pulsed excitation of spontaneous
fluorescence in the particle, the time behavior of the
power of the spontaneous emission field, upon the
fulfillment of the condition (18), is characterized by
the exponential attenuation with the constant, equal
to the time of the excited level depopulation of the
active molecule. The influence of attenuation within
the resonator on the time behavior of spontaneous
emission is negligible, as long as the condition
Γn >>Γ21 is valid, and reduces to only the broadening
of the fluorescence spectral line, mentioned above.
 One of the features of spontaneous emission
from a microparticle is the fact that the intensity of
spontaneous component of the field at every point
depends on the degree of its spatial overlap with all
other modes of the pump field. In other words, the
resonator morphology, determining the spatial
structure of the interacting fields, influences the
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energy characteristics of the incoherent signal
induced.

Influence of resonator morphology
on the power of spontaneous emission

Consider the overlap integrals Π(1)
nm  for the

spherical resonator in a more detail. In this case, the

eigenfunctions TE,TH( )nE r  are expressed, as was noted

above, through the spherical vector-harmonics (1)
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where ψn are the spherical Riccati–Bessel functions,
the dash denotes the derivative with respect to the
entire argument; δnm is the Kronecker delta. Then the
factor of overlapping among the TE-modes Π(1)

nm  is
the integral of the product of squared absolute values
of vector harmonics with different indices and
different eigenfrequencies:
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Π = ϕ θ θ ×

× θ ϕ ⋅ θ ϕ

∫ ∫

∫ M M

Figure 1 shows the overlap integral Π(1)
nm  as  a

function of the effective dimensionless half-width of
the resonance contour of eigenmodes of the field
Γ = Γ + Γ = Γ ω + Γ ωnm n m n n m m. The following model
case was considered. It was assumed that, in the
rhodamine-doped water drop exposed to the radiation
with λL = 0.53 µm, the fluorescence at the
wavelength λs = 0.6 µm with the spectral line width

Γ0 = 2 ⋅ 1013 Hz is induced. As an example, we took a
particle having the radius a0 = 10 µm and considered
three modes of the secondary field: 2

125(1)TE  (¨),
3
119(1)TE  (¡), and 4

115(1)TE  (∆), having equal

eigenfrequencies ωn (but different Γn) and falling
within the spectral contour of the fluorescence. For
each of these modes, we calculated the array of overlap
integrals with different principal field modes, sampled
randomly from the ranges of the indices mθ = 1–
(2xa), mr = 1–5, mϕ = 1, where xa = 2πa0/λL. The
obtained values of Π(1)

nm  were constructed as functions

of the combined parameter Γnm .

10–9

0

20

40

10–6 10–3 10–0 Γ
–

nm

Π(1)
nm

1 2 3

4

5

Fig. 1. Integral of the mode overlap Π(1)
nm  as a function of

the parameter Γnm  in the water drop (a0 = 10 µm). The
groups of points 1 – 3 correspond to the overlapping
eigenmodes with identical radial indices: nr = 2 (1),  3 (2),
4  (3); and with different radial indices (group 4). Line 5

shows the level of Π(1)
nm = 1.

It follows from Fig. 1 that the whole array of
the values of the overlap coefficient can conditionally
be divided into two groups of points. One of them
(with the numbers 1–3) characterizes the situation of
the optimal spatial overlap of the modes and the high
values of the coefficient Π(1)

nm , which allows one to
speak about the resonance character of the process of
wave interaction. In this case, the spatial profiles of
the interacting modes are in a rather accurate
correspondence, and the detailed analysis carried out
in Ref. 13 showed that the overlap the radial modes
(coincidence of the radial mode numbers nr) is of
critical importance here. This can also be seen from
Fig. 2, which shows the spatial distribution of the

integrand function θ ⋅ θ
2 2

( ; ) ( ; )n mr rE E  for two

combinations of the overlapping modes with the same
and different values of the radial index nr. The
increase of the Q-factor of the interacting modes
(decrease of the parameter Γnm ) for this group of
points leads to the corresponding increase of the
overlap factor.
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Another group of points in Fig. 1 (group 4)
represents overlapping of the eigenmodes with
different radial indices nr. The values of Π(1)

nm  for this
type of overlap are much lower, especially, in the
range of narrow spectral contours of the modes, and,
in contrast to the previous case, have the tendency to
saturation with the decrease of Γnm  (increase of the
Q-factor of the modes). This saturation is caused by
the increasing degree of spatial inhomogeneity of the
modes and the contraction of the zone of their
efficient overlap.

a b
Fig. 2. Spatial profile of the function En(r;θ)2⋅En(r;θ)2

at the principal cross section of the water drop for different
combinations of eigenmodes of the internal optical field:

(a) 3
119(1)TE – 3

84(1)TE  (Π(1)
nm = 34); (b) 3

119(1)TE  – 1
84(1)TE

(Π(1)
nm = 21).

In the limiting case of the low-Q modes (high
Γnm), both of the groups of points fall in the same

range of close-to-unity values of the factor Π(1)
nm. In

fact, this type of interaction is analogous to
spontaneous fluorescence in the free space, when the
eigenfunctions of the problem are traveling waves:

( ) i
n e∼ krE r , and the overlap factor Π(1)

nm ≈ 1.

The dependence Π Γ(1) ( )nm nm  shown in Fig. 1,
regardless of the fact that it is calculated for the
fixed size of the particle, is nevertheless rather
universal for the mode overlap in the particles of
different size. The increase or decrease of the particle
radius will change the combination of the eigenmodes
of the primary and secondary fields, taking part in
the nonlinear interaction, because ωn ∼ 1/a0. In this
case, the spectral contour of spontaneous emission
ω = ω0 ± γn will overlap for example, with the
decreased particle radius,  the eigenmodes of the
secondary field with smaller indices and,
consequently, larger values of the parameter Γn .
Correspondingly, the number of modes of the primary
field, which really take part in the interaction, will
decrease. Thus, the decrease or increase of a0 will
correspond to the movement along the dependence
shown in Fig. 1 from the left to the right or from the
right to the left, respectively.

Estimate the cross section of spontaneous
fluorescence of the particle. Assume that the spatial
overlap of the modes of the primary and secondary
fields is characterized by some identical effective

value of the integral coefficient (1)
eff[ ]Π . Then the

internal sum in Eq. (22) over the modes of the pump
field can be expressed through the factor of spatial

inhomogeneity of the field
20

L a1 ,m

m

B V a= ∑
averaged over the particle volume, as follows:

2 20 (1) (1) 0 (1)
a Leff eff[ ] [ ]m nm m

m m

a a V BΠ ≈ Π = Π∑ ∑ . (24)

Note that the dependence of the factor LB  on the
diffraction parameter of the particle xa = ωLa0/c
(Fig. 3) has the pronounced resonance character. The
observed peaks are connected with the fulfillment of
the condition of resonant excitation of the
corresponding modes of the pump field in the
particle: ωL = ωm (the so-called input resonances),
and the value of the factor LB  in this case can be
more than an order of magnitude greater that the
non-resonant background, where LB ≈ 1.5–2.
Consequently, as the particle radius varies, the cross-
section of spontaneous fluorescence follows the input
resonances of the pump field.

63 64 65 66

0

10

20

30

40 B
–

L

xa

Fig. 3. Volume-averaged factor of inhomogeneity of the
internal optical field as a function of the diffraction
parameter of a particle with the refractive index na = 1.33.

Re-write Eq. (22) taking into account Eq. (24):

(1) (1) 4a s
s 0 a L aeff3

21

[ ] ( )
8

n n n

n

G
C V B x g

c
ε

σ ≅ Π η ω
π Γ ∑ . (25)

As can be seen from this equation, the cross
section of spontaneous emission of the particle (1)

sσ  is
proportional to the particle volume Va and the
concentration of active molecules C0, as was noticed
in the experiment (Ref. 14). In the regime of
saturation of the fluorophore absorption, the linear
dependence of the cross-section (1)

sσ  on the

concentration breaks, and (1)
sσ  transits into the regime

of saturation.
The radiation spontaneously emitted from the

resonator is usually a multimode one. Under these
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conditions, the equation obtained can be analyzed
only numerically. For analytical estimation, consider
the unimodal regime of spontaneous emission from
the particle. In this case, in the sum of the Lorentz
contours of the secondary field modes in Eq. (25),
under the condition ωn = ω0 (the so-called output
resonance), the corresponding term will dominate.
The cross section of particle fluorescence in the
unimode regime takes the form:

4
(1) a 0
s 0 0 3

21

2
(1)0

s a L aeff2
0

( )
8

[ ] ( ).
( )

n

n
n

C
c

G V B x

ε ω
σ ω = ω ≅ ×

π Γ

ω
× η Π

Γ + Γ
 (26)

If the dominant mode is a high-Q mode, that is,
Γn <<Γ0, then the fluorescence cross section is
inversely proportional to the squared natural line
width of spontaneous emission Γ0. For the low-Q
mode (Γn >>Γ0), the decisive role in (1)

sσ  belongs to
the natural attenuation within the resonator.

Compare Eq. (26) with the cross section of
spontaneous fluorescence in an extended medium (1)

s ∞σ .

The ratio of the fluorescence cross section of the
particle in the regime of excitation of a single mode
of the secondary field to that in a spherical area
without the pronounced resonant properties,
containing the same number of the active molecules
and having the same volume, is the following:

(1) (1) (1)
s s L eff2

0

1
[ ] .

(1 )n
B∞σ σ = Π

+ Γ Γ
 (27)

For numerical estimation, let us take water drop
with the refractive index na = 1.33. At the mean
value of the overlap integral (1)

eff[ ]Π ≈ 20, we have
the sought ratio of fluorescence cross-sections in the
absence of input resonance ( LB ∼ 2): (1) (1)

s s ∞σ σ ∼ 0.1 for

low-Q modes (Γn >>Γ0) and (1) (1)
s s ∞σ σ : 40 for high-Q

modes (Γn <<Γ0). At the resonance excitation of
spontaneous fluorescence by the incident wave (input
resonance conditions), when LB >> 1, these estimates
should be increased by more than an order of
magnitude.

Thus, upon the excitation of spontaneous
fluorescence in microparticles, the spectral cross
section of a single-photon process for some modes can
exceed the cross section of spontaneous emission for

the same volume of an extended medium, and this
excess is proportional to the product of the factors
accounting for the focusing properties of the particle
and its characteristics as a dielectric microresonator.
The spherical shape causes the appearance of local
peaks in the spatial intensity distribution of the
pump field and the secondary wave inside the
microparticle. As a result, excitation of active
molecules in these zones is more efficient as compared
to the extended medium. It can be stated that this is
just the main cause for the asymmetry in the angular
distribution of the fluorescence field from particles
(observed in some experiments, see, for example
Ref. 6), whereas the spontaneous fluorescence from a
bulky medium has the isotropic angular distribution.
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