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Technique of ultra-short-term forecast of atmospheric parameters based on the Kalman filtering 

algorithm and 2D dynamic-stochastic model of the regression type is considered, and the results of its 
qualitative estimate for the boundary layer (up to the altitude of 800 m) based on meteorological and 
aerological observations are discussed. 

 

Introduction 
 
Rapid development of industry, transportation, 

and energy production in recent years, as well as 
introduction of new production processes associated 

with weapon tests and recovery of ecologically 

hazardous technologies, brought about a considerable 
increase of pollutant emission to the atmosphere. In 
this regard, simulation and forecast of atmospheric 
pollution level on restricted territories (within big 

towns, industrial centers, and near the regions of testing 

and recycling of ecologically hazardous technologies) 
becomes an important problem of the environmental 
protection. Most urgent is the ultra-short-term forecast 
of atmospheric pollution necessary in taking timely 
measures against the increase of the pollutant 

concentration. 
The time variations of pollutant concentration 

depend mostly on changes of meteorological situation 
and primarily on the temperature stratification 

(influencing the conditions of the turbulence 

development) and wind (influencing the pollutant 
transport)1; therefore, it is necessary to solve 

preliminary the problem of ultra-short-term forecast 
of just these parameters. 

It is well known that presently the ultra-short-
term (up to 12 h) forecast is based mainly on two 
approaches: hydrodynamic and physical-statistical. 
However, both have some disadvantages. 

For instance, in case of application of the 

mesoscale hydrodynamic model,2 we deal with quite a 
cumbersome algorithm of its implementation, with 
considerable (up to 18–25%) contribution of the 
input data uncertainty to errors of numerical forecast 
schemes,3 and, finally, with a necessity to invoke the 
measurement data on quite large territories. The last 
disadvantage impedes the solution of the problem 
based on observational data from a single station. 

At the same time, the physical-stochastic 

approach, based on the most widespread methods of 
the regression analysis, though usable in solving the 

problem of the ultra-short-term forecast by the data 
from a single station, nonetheless requires constructing 
(based on the data of many-year observations) of 
regression prognostic equations, whose parameters  
can not be revised in the process of time forecasting. 
In addition, the amount of the input data must 

substantially exceed the number of regression 

coefficients to be determined. Besides, the least square 
method, used in the calculations, introduces some 
error,  arising  due  to  smoothing the extreme values. 

The above-mentioned disadvantages of the 

hydrodynamic and physical-stochastic approaches have 
motivated recent intensive studies into development 
of new methods of the ultra-short-term forecasting of 
atmospheric state parameters provided a minimum of 
initial experimental information. One of such methods, 
in particular, is the modified method of clustering of 
arguments (MMCA), developed at the Institute of 
Atmospheric Optics SB RAS.4–6

 This method, after use 

of the procedure of its integration with the method of 
optimal extrapolation of random process (the latter is 
used for forecasting only ground-based values of a 
meteorological variable) allows the ultra-short-term 
forecasting of the atmospheric state parameters given 
the data of a limited number of fast-speed 

measurements from a single station. 
Despite significant advantages of the MMCA 

(base method) over traditional regression methods (its 
realizability with data of a limited number of 
experimental measurements; a multi-criterion choice 
of the prognostic model; the absence of the necessity 
to use the least squares method introducing extra 
errors in calculation results), it has some drawbacks. 
They include, in particular, the need to invoke (in 
solving the problem of the time forecast) the additional 
method of random process extrapolation required in 
forecasting for the near-ground level; the necessity in 
the advance receipt of a sample of real-time data of 
the volume no less than N = k + 1 (k ≥ 7 is the 
number of used levels); and meeting the condition 
that the time interval of the forecast coincides with 
that of aerological measurements. 
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On account of all the aforesaid, we propose a 
new methodical approach to the problem of the ultra-
short-term forecast of the atmospheric state 

parameters, based on the Kalman filtering algorithm 
and two-dimensional dynamic-stochastic model, 
describing the altitudinal and temporal variations of 
these parameters. A distinctive feature of this approach 
is that these variations represent stochastic processes 

with prescribed correlation properties. Moreover, in 
contrast to the hydrodynamic approach, our procedure 
of the ultra-short-term forecast is accomplished using 
the data of aerological observations from a single 
station. 

In addition to the description in a detail of the new 

method, we also present the results of its qualitative 
estimate based on the data of the temperature–wind 
sensing. 

 

1. Formulation of the problem 
and method of solution 

 

The problem of ultra-short-term forecast of  
the field of some atmospheric parameter (i.e., 
meteorological variable) at a given spatial point (õ0, 
y0, z0) of aerological observations is in estimation of 
the field’s value at the moment t0 + 1 according to 
measurements at the moment t and the earlier moments 

being the predictors. The estimates are obtained using 
the given mathematical model describing variations 
of the field in altitude and time. 

As such a model, the following model can be used 
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where ξh(k) is the value of the meteorological 
variable field at the height h at the moment k; m is 
the number of the altitudinal level, where the 
forecast is made, ranging from h – i to h + i (here 
i = 1, 2, …, n is the maximal number of altitudinal 
information levels, data from which are taken into 
account in forecasting the field ξ at the level h); j is 
the current value of the discrete time, varying from 1 
to k (which, thereby, defines the window depth of the 
autoregression); dj,m are the unknown coefficients, 
which are evaluated. They determine the interrelation 
between the value of the field ξh(k) to be estimated 
and its values at preceding moments at a given 
altitude  and  adjacent altitude levels, i.e.,  ξm(k – j). 

Thus, in accordance with Eq. (1), the estimate 
of the field of the given meteorological variable ξh(k) 
at a fixed altitude level h and at a fixed moment k is 
a linear combination of the vector of unknown 
parameters dj,m = D and values of this field at 

preceding moments to the depth k, at the same altitude 

level  and  at  ith  above-lying and below-lying levels. 
Further, dealing with the method of ultra-short-

term forecast and in numerical experiments, we will 
assume i = 1, i.e., one level above and below the 
fixed one. 

Note that in Eq. (1), the measured values of  
the meteorological field (not converted) are used as 
input data. This, naturally, imposes some limitations 
on the field. 

To obtain estimates of the forecasted variable with 
acceptable quality, it is necessary that the function 
describing time variations of meteorological field be 
smooth and free of inflections.  

Let us consider in detail the method of ultra-
short-term forecast (for one and several steps forth), 
based on the Kalman filter and the model (1). 

The problem of forecasting the ξ field at some 
observation point is split into two stages. At the first 
stage, model coefficients dj,m are estimated using values 
of meteorological field at the point (x0, y0), at the 
moment k and preceding moments at a fixed altitude 
level h and neighboring levels.  

At the second stage, values of the field at a  
given point at the moment k + 1 and height h are 

reconstructed, using the estimated coefficients and 
mathematical model (1) on the assumption of the 
field’s homogeneity and isotropy.  

Thus, the forecast equation for one step forth is 
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Here ξ^h(k + 1) is the estimate of the meteorological 
field at the moment k + 1; d

^
j+1,m are unknown model 

parameters, estimated at the kth time step; ξm(k – j)  
are measured values of meteorological field at the 
point of forecast at altitude levels from h – 1 to 
h + 1 at the moments from k to 1. 

Following Ref. 7, to estimate the unknown 
parameters of the model (1), i.e., dj,m, it is necessary 
to specify the system of difference equations in the 
matrix form 

 

 ΧΧΧΧ(k + 1) = F(k) ⋅ ΧΧΧΧ(k) + ΩΩΩΩ(k), (3) 

where 

 ΧΧΧΧ(k + 1) =  d1,0(k + 1), d2,0(k + 1), d3,0(k + 1),  

 d2i+1,0(k + 1), d1,1(k + 1), …, d2i+1,k(k + 1) Ò
  

is the state vector with dimension (2i + 1)k (here Ò 
denotes the matrix transpose operator), containing the 
unknown parameters of the dynamic system state and 
parameters to be estimated; F(k) is the transition matrix 

for discrete system of dimension (2i + 1)k × (2i + 1)k; 

ΩΩΩΩ(k) = ω 1, ω2, …, ω(2i+1)k Ò is vector of random 
perturbations of the system (state noise vector). 

If to assume that the considered meteorological 
field is isotropic and stationary, and the unknown 
parameters and parameters to be estimated X(k) do 
not change on average on the given time interval, 
then 

 X(k + 1) = X(k) (4) 

and the transition matrix F(k) is a unit matrix. 
The mathematical model of measurements, which 

are used in the Kalman filtering algorithm to estimate 
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the system state, in the general case is described by 
an additive mixture of the useful information and the 
measurement error, i.e., 

 Y(k) = ξ(k) = H(k) ⋅ X(k) + E(k), (5) 

where Y(k) is vector of actual measurements. In our 
case, Y(k) is a scalar (number), representing a 
measurement at a fixed altitude at instant k; Í(k) is 
the observation matrix of dimension ((2i + 1)k × 1), 
i.e., it is a row vector whose elements are the 
predictors chosen with a certain weight and following 
one after another; and Å(k) is vector of measurement 
errors (measurement noise). 

Let us consider in more detail the procedure of 
filling the observation matrix Í(k), because each 
element of this matrix includes weighting coefficients. 
Introduction of these coefficients makes it possible to 
take into account the time and vertical correlations 
between individual values of the meteorological field, 
obtained at preceding moments at different altitude 
levels located below and above the forecast level. 
Assuming the time and vertical correlations for the 
given field dependent, we can, in conformity with 
Ref. 8, introduce the relation 
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where µξ(τk, ∆hm) is the weighting factor taking into 
account the correlations between measurements of 
meteorological field at the kth moment at mth 
altitude (here τk = ∆t, 2∆t, 3∆t, …, k∆t is time delay, 
∆t is the discretization interval in hours; k is the 
depth of the delay window; ∆hm = hm – hi is the 
thickness of altitudinal layer (in km) for m levels, 
with i = m + 1 or i = m – 1 being the maximal 
number of altitudinal information layers whose data 
are taken into account in forecasting the ξ field at 
the level m); τ0 and h0 are radii of time and vertical 
correlations, respectively. 

According to our studies, the radii of time (τ0) 
and vertical (h0) correlations in formula (6) are as 
follows: τ0 = 30 h and h0 = 4500 m (for temperature); 
τ0 = 24 h and h0 = 1500 m (for orthogonal components 
of wind velocity). 

Thus, Í(k) can be written as 
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that is, in such a way we introduce forgetful factors, 
ensuring the condition that the data (altitudinally 
and temporally) close to the forecast point contribute 
more than more distant data. 

If the time and vertical (interlevel) correlations 
are weak, equation (6) can be considered as a product 
of two exponents, namely: 
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After determination of all elements entering 
equations (3) and (5), the estimation problem can be 
solved with the linear Kalman filter,8 allowing us to 
estimate components of the state vector with minimal 
root-mean-square errors. A detailed description of the 
filter is given in Ref. 9. 

The above-mentioned method, based on the 

Kalman filtering algorithm and two-dimensional 
dynamical-stochastic model, was estimated from the 
viewpoint of its applicability to solution of the 
problem of ultra-short-term (up to 6 h) forecast of 
temperature and orthogonal wind velocity components 
in the atmospheric boundary layer. 

To estimate the quality of the method, we used 
data of two-term (00.00 and 12.00 GMT) aerological 
and eight-term (00.00, 03.00, 06.00, 09.00, 12.00, 
15.00, 18.00, and 21.00 GMT) meteorological 
observations, obtained in January 2004 for two 
stations: Vienna station of temperature–wind sensing 
(48°16′N, 16°22′E) and synoptic station with the same 

name but somewhat different geographic coordinates 

(48°16′N, 16°21′E). Since the data from altitudinal 
levels for synoptic-scale terms (03.00, 06.00, 09.00, 
15.00, 18.00, and 21.00 GMT) are usually absent, 
they were reconstructed from the ground-based 
meteorological measurements using the multiple 

regression model.10 The model parameters were 

estimated using statistical characteristics 

(mathematical expectations, variances, and coefficients 
of interlevel correlation), preliminarily calculated  

from two-term aerological measurements. Naturally, 
the reconstructed values of temperature and wind 
have certain uncertainties, which, however, in the 

preliminary assessment of the developed method 
quality can be neglected. 

The root-mean-square (δ) and relative (θ) errors 
of the ultra-short-term forecast of temperature and 
zonal and meridional wind velocity components are 
presented in Table; the forecast is performed by the 
dynamic-stochastic method for different altitudes. 

Analysis of Table shows that: 
– the suggested technique, based on the Kalman 

filtering algorithm and two-dimensional dynamic-
stochastic model, can be used in practical 
applications, especially in forecasting for τ = 3 h, 
with satisfactory results. Indeed, the relative error θ 
varies within the range 24−36%, independently of the 
meteorological variable and altitude level (except for 
the near-ground level, where the forecast using only 
data of time series, has larger errors); 

– the quality of the ultra-short-term forecast, 
based on the suggested method, is markedly worse  
at τ = 6 h; but even in this case the errors are within 
34–66%, not exceeding a maximal permissible value  
of 66%. 
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Root-mean-square (δδδδ) and relative (θθθθ,%) errors  
of ultra-short-term  (with lead time ττττ = 3 and 6 h) 
forecast  of temperature and zonal and meridional   

wind velocity components 

τ = 3 h τ = 6 h Height, 
m δ θ δ θ 
 Temperature, °C 
0 1.3 35 2.1 54 

100 1.0 30 1.8 54 
200 0.9 29 1.5 50 
300 0.9 28 1.5 50 
400 0.9 29 1.5 50 
600 0.8 28 1.3 45 
800 0.7 24 1.0 34 

 Zonal wind velocity component, m/s 
0 1.5 50 2.0 64 

100 1.1 34 1.9 59 
200 1.0 31 2.1 58 
300 1.2 29 2.6 61 
400 1.4 29 3.0 63 
600 1.6 29 3.2 58 
800 1.7 28 3.6 59 

 Meridional wind velocity component, m/s 
0 1.2 52 1.6 66 

100 0.9 36 1.4 56 
200 1.0 33 1.8 60 
300 1.2 33 2.3 62 
400 1.3 31 2.6 62 
600 1.7 31 3.4 60 
800 1.9 29 3.7 56 

 

Thus, our preliminarily conclusion is that the 
developed technique can be used in solution of the 
problem of ultra-short-term forecasting, especially for  
 

τ ≤ 3 h. However, the obtained results of numerical 
experiments need further testing and refinement on  
the basis of aerological data of high temporal resolution 

(for example, radiometric and sodar measurements). 
This will be the subject of our further researches. 
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