
M.A.Buldakov and V.N. Cherepanov Vol. 18,  No. 9 /September  2005/ Atmos. Oceanic Opt.  739 
 

0235-6880/05/09 739-06 $02.00  © 2005 Institute of Atmospheric Optics 
 

 
 

Dynamic polarizability functions of H2 and N2 molecules 
 

M.A.Buldakov1 and V.N. Cherepanov2 
 

1 Institute of Monitoring of Climatic and Ecological Systems,  
Siberian Branch of the Russian Academy of Sciences, Tomsk  

  2 Tomsk State University 
 

Received March 14, 2005 
 

We propose an analytical approach to description of the dynamic polarizability functions of 
H2 and N2 molecules. Frequency behavior of the polarization functions of these molecules are defined 
through the entire range of internuclear distance R = [0,∞) and correctly describe their asymptotic 
behavior both at small and large R values. Numerical values of the dynamic polarizability functions 
of H2 and N2 molecules obtained are quite reasonable estimates of their upper bound. 

 

Introduction 
 
In the adiabatic approximation, the polarizability 

tensor of a molecule is a function of coordinates of 
the nuclei and of the frequency ω of the external 
electromagnetic field. The tensor of electron 
polarizability of a diatomic molecule depends only on 
two independent coordinates (functions or surfaces of 
the polarizability), αzz(ω, R) and αxx(ω, R) = αyy(ω, R), 
where R is the distance between the nuclei and the z-
axis coincides with the molecular axis. 

At present the polarizability surfaces are known 
in wide ranges of R and ω only for hydrogen 
molecule.1–7

 Moreover, most of these studies used high-
precision special ab initio methods of calculations, 
which are only applicable to diatomic molecules with 
one or two electrons. In the case of diatomic molecules 
with larger numbers of electrons ab initio calculations 

have been performed only within relatively narrow 

interval of internuclear distances near its equilibrium 
value Re (see, for instance, Refs. 8–10). For the case 
of entire range of internuclear distances only static 
polarizability functions have been obtained and only 
for molecular nitrogen11–15 and oxygen13–15 and for 
CH molecule (Ref. 12). Moreover, these functions 
have been calculated within the framework of a semi-
empirical approach. As to the frequency behavior of 
the polarizability of multielectron molecules, it has 
been studied only at equilibrium internuclear distance 
Re (see, for example, Refs. 16–19). 

The aim of this study is to show how the functions 
of electron polarizability αzz(ω, R) and αxx(ω, R) = 
= αyy(ω, R) of H2 and N2 transform at variation of 
the frequency of the external electromagnetic field. 
 

Analytical representation of the 
dynamic polarization function 

 
Tensor of the dynamic electron polarizability of 

a homonuclear diatomic molecule being in its nth 
energy state can be presented in the following form 
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where ( ) ( )in R d m R is the ith component of the 

dipole moment of the transition between the nth and 
mth electron energy states having energies En(R) and 
Em(R). It is obvious that the frequency behavior of 
the molecular polarizability is fully determined by 
the structure of the electron energy levels of the 
molecule as well as by the probabilities of the dipole 
transitions among these levels. For this reason the 
view of this frequency behavior is characteristic of a 
molecule and of particular components of its 
polarizability tensor. 

For a molecule at the ground electron energy 
level expression (1) can be presented by the product 
of its static polarizability, α(0)(0, ),ii R  and a frequency 

dependent factor fi(ω, R): 

 α ω ≈ α ω(0) (0)( , ) (0, ) ( , ),iii iiR R f R  (2) 
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Here E0(R) is the energy of the ground electron 
energy state of the molecule; E1i(R) is the energy of 
the lowest of the excited electron energy states the 
transition to which from the ground state is allowed. 
Note that the energies E1i(R), in the expression (3), 
are different for different components of the 

polarizability tensor, (0)( , )zz Rα ω  and 
(0)( , )xx Rα ω ≡  

(0)( , )yy R≡ α ω . These energies are determined by the 

selection rules for Λ value, the eigenvalue of the 
projection of the electron orbital moment onto the 

molecular axis. Thus, for (0)( , )zz Rα ω  component of the 
tensor the lowest excited electron energy state (E1i(R) 
energy) is determined by the selection rule ΔΛ = 0, 
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while for the components 
(0) (0)( , ) ( , )xx yyR Rα ω ≡ α ω  the 

selection rule reads ΔΛ = 1. 

The energy difference E1i(R) – E0(R) in the 

expression (3) can be presented by a function, which 
is finite and continuous within the entire range  
of internuclear distance variation R ∈ [0, ∞). As a 
result the frequency dependent factor fi(ω, R) is a 
continuous function of R. At ω = 0 this factor  
takes the value fi(ω, R) = 1 while increasing with the 
growth of the frequency ω of the electromagnetic 
field. Note that expression (2) sets the upper boundary 

for the components of dynamic polarizability of  
the molecule (0)( , )ii Rα ω  in the frequency range 

ω < [E1i(R) – E0(R)]/ .  
 

Dynamic polarizability  
of a hydrogen molecule 

 

The method we propose for calculating αii(ω, R) 
factor (Eqs. (2) and (3)) has been first tested by 
calculations made for a hydrogen molecule. (Here and 
in what follows, we omit the superscript denoting the 
ground electron state of the molecule.) To achieve this 
task, we have calculated, by formulas (2) and (3) the 
functions of the H2 molecule’s dynamic polarizability 
and compared it with the values αii(ω, R) from  
Ref. 6 obtained by use of high-precision ab initio 

calculations. To calculate αii(ω, R) values, we have 
constructed the energy differences E1i(R) – E0(R). 
The values E0(R) of the potential energy of the ground 
electron energy state +Σ1( )gX  were taken from 

Ref. 20, while the energies E1z(R) and E1x(R) of the 
excited electron states +Σ1( uB  and Ñ1Πu, respectively) 
from Ref. 21. In the region of small internuclear 
distances (R ≤ 0.5 Å) the missing values of the energy 
differences  

ΔEz(R) = E1z(R) – E0(R) and ΔEõ(R) = E1õ(R) – E0(R) 

were determined by interpolation to the value 

ΔEz(0) = ΔEõ(0) = E(1P0) – E(1S), 

where E(1S) and E(1P0) are the terms of the ground 
state (1S) and of the first, allowed by the selection 
rules, excited state (1P0) of the “united” He atom. 
Figure 1 presents the functions ΔEz(R) and ΔEõ(R) 
calculated for the H2 molecule. 

These functions have been used in calculating 
the frequency dependent factors fz(ω, R) and fx(ω, R), 
which then allowed, together with the static 
polarizability αii(0, R) taken from Ref. 2, to calculate 
the relevant functions of the components of the 

dynamic polarizability tensor, αzz(ω, R) and 

αxx(ω, R) = αyy(ω, R), as well as its invariants: the 
mean polarizability 

 α ω = α ω + α ω⎡ ⎤⎣ ⎦( , ) ( , ) 2 ( , ) 3zz xxR R R  (4) 

and the polarizability anisotropy 

 γ ω = α ω α ω( , ) ( , ) – ( , ).zz xxR R R  (5) 
 

 
            0           1           2            3          4      R, Å 
Fig. 1. The difference between the electron terms of the H2 
molecule. 

 

Thus obtained invariants of the dynamic 

polarizability tensor of a hydrogen molecule are 
depicted in Fig. 2, where the results obtained by 
ab initio calculations6 of these invariants are shown 
for comparison. 

 

 
     0              1            2             3          4        R, Å 

a 

 
     0              1            2             3          4        R, Å 

b 
Fig. 2. The mean dynamic polarizability (a) and anisotropy 
of the dynamic polarizability (b) of the H2 molecule: 
ω = 15803 cm–1 (1); 33692 cm–1 (2); 43424 cm–1 (3); 
51658 cm–1 (4); 54867 cm–1 (5). Solid lines correspond to our 
calculations, rhombs present data of ab initio calculations.6 
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It is well seen from these data that despite of 
being quite simple the proposed method adequately 
describes the invariants of the polarizability tensor of 
H2 molecule as functions of the frequency of the 
external electric field. This conclusion is obviously 
valid in the case of individual components of the tensor 

of dynamic polarizability of the hydrogen molecule as 
well. Comparison of the calculated components of the 
dynamic polarizability tensor of the hydrogen molecule 
has also been made with the data available from 

literature for the characteristic values of the 

internuclear distance R = 0, Re, ∞. 
Figure 3 shows the calculated results on αzz(ω, 0) = 

= αxx(ω, 0) and the dynamic polarizability of the 
ground state of the helium atom taken from Refs. 22 
and 23 (Fig. 3a) as well as on the αzz(ω, ∞)/2 = 
= αxx(ω, ∞)/2 and the dynamic polarizability of the 
ground state of the hydrogen atom taken from 
Ref. 24 (Fig. 3b). 

The dynamic polarizability of the hydrogen 

molecule at R = Re (see Refs. 3 and 7) and the 

frequency dependences of the polarizability tensor 
components αzz(ω, Re) and αõõ(ω, Re) are shown in 
Figs. 3c and d. Analysis of the curves presented shows 
that though our calculated data exceed the results 
obtained by ab initio calculations the mismatch 
occurred to be not very large so it does not distort 
the view of the dynamic polarizability functions 

essentially. Note that this method yields quite good 
results for the frequency dependences of the 

components of the polarizability tensor (see Fig. 4). 
 

 ( ) =
′α = ∂α ω ∂

e
ee

( , ) .ii ii R R
R R R  

Therefore, the proposed method of calculating  
the functions of the dynamic polarizability αzz(ω, R)  
and αõõ(ω, R) = αóó(ω, R) quite well describes their 

frequency behavior for H2 molecule and may be applied 
to description of other diatomic molecules. 

 

 
           0    10000  20000  30000  40000  50000      ω, cm–1 

 
           0    10000  20000  30000  40000  50000      ω, cm–1 

a b 

 
           0    10000  20000  30000  40000  50000      ω, cm–1 

 
           0    10000  20000  30000  40000  50000      ω, cm–1 

c d 
Fig. 3. Dynamic polarizabilities of He and H atoms and of the H2 molecule at R = Re; helium atom: solid line presents  
our calculations, open circles are the data of ab initio calculations from Ref. 22; crosses show ab initio calculations from 
Ref. 23 (a); hydrogen atom: solid line presents our calculations, rhombs show ab initio calculations from Ref. 24 (b);  
H2 molecule: solid line presents our calculations, crosses show ab initio calculations from Ref. 3; open circles are the data of  
ab initio calculations from Ref. 7 (c and d). 
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         0    10000  20000  30000  40000  50000      ω, cm–1 

 

 
         0    10000  20000  30000  40000  50000      ω, cm–1 

b 
Fig. 4. Frequency dependences of ′α e( )zz  (a) and of ′α e( )xx  
(b) of H2 molecule at R = Re. Solid line presents our 
calculations, open circles are the data of ab initio 
calculations from Ref. 6; crosses show ab initio calculations 
from Ref. 7. 
 

Dynamic polarizability  
of the nitrogen molecule 

 
We have applied the above-discussed method to 

calculation of the dynamic polarizability functions of 
the nitrogen molecule. Figure 5 shows the functions 
ΔEz(R) and ΔEõ(R) calculated using numerical values 
of the energy E0(R) of the ground electron state 

1
gX +Σ  taken from Ref. 25 and energies E1z(R) and 

E1õ(R) of the first excited electron states +Σ1( u  and 
1Πu, respectively) taken from Ref. 26. 

Note that in the range of small internuclear 

distances (R ≤ 0.85 Å) the missing energy differences 
ΔEz(R) and ΔEõ(R) were determined, as in the case 

with the H2 molecule, by their interpolation to the value 
 

 ΔEz(0) = ΔEõ(0) = E(1P0) – E(1D), 

where E(1D) and E(1P0) are the terms of the excited 
states 

1D and 
1P0

 of the “united” Si atom. These terms 

are determined following the rules of correlation 
between the electron states of a diatomic molecule 
and the states of the “united” atom. Using thus found 
functions ΔEz(R), ΔEõ(R), and the components of the 
static polarizability tensor αii(0, R) from Ref. 15, we 
have calculated components of the tensor of dynamic 
polarizability of the nitrogen molecule (see Fig. 6). 
 

 
             0           1            2             3           4      R, Å 
Fig. 5. Difference of the electron terms of the N2 molecule. 
 

 
          0           1            2             3           4      R, Å 

a 

 
          0           1            2             3           4      R, Å 

b 
Fig. 6. Components of the tensor of dynamic polarizability of 
N2 molecule αzz(ω, R) (a) and αõõ(ω, R) (b): ω = 0 cm–1 (1); 
20000 cm–1 (2); 40000 cm–1 (3);  60000 cm–1 (4). 
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           0   10000  20000  30000  40000  50000   ω, cm–1 

a 

 
            0     5000    10000  15000  20000  25000   ω, cm–1 

b 

 
           0    10000  20000  30000  40000  50000   ω, cm–1 

c 
Fig. 7. Dynamic polarizability of Si and N atoms and N2 
molecule at R = Re; N2 molecule: solid lines present our 
calculations; dashed lines show data of ab initio 
calculations from Ref. 27 (a); atom of Si (1D): solid line 
presents our calculations, rhombs show data of ab initio 
calculations from Ref. 28 (b); nitrogen atom N (4S); solid 
line presents our calculations, dashed line shows data of  
ab initio calculations from Ref. 29 (c). 

 
In contrast to H2 molecule with the most strong 

frequency dependence of the polarizability tensor 
components occurring at R ≈ 2 Å in nitrogen molecule 

such a strong dependence occurs at small internuclear 
distances. At the same time the minimum frequency 
of the resonance transition in N2 molecule coincides 
with the resonance transition in the “united” Si atom 
(≈ 34700 cm–1). It is for this reason that no values of 
the components of the polarizability tensor are shown 
in Fig. 6 for R ≤ 0.3 Å as those are too large or take 
negative values. The dependences depicted in Fig. 6 can 
be checked up only at some particular distances 

between the nuclei. Figure 7a shows the curves of the 

frequency dependences of αzz(ω, Re) and αõõ(ω, Re) 
components of the polarizability tensor calculated in 
this study and in Ref. 27. 

It is seen that the curves do agree quite well. The 

approach of the “united” atom allows the comparison 
with the literature data to be performed only between 
the mean polarizability α(ω, 0) values (see Fig. 7b). 
Analysis of the frequency dependences presented in 
these figures, shows that our results only slightly 
exceed those from Ref. 28 at the frequencies up to 
ω ≤ 25 000 cm–1, while then the difference between 
them rapidly grows with the frequency growth. Such 
a growth is caused by that the increasing frequency 
approaches the frequency of the resonance transition 
in the “united” Si atom (≈ 34 700 cm–1). 

Figure 7c shows the calculated components 

αzz(ω, ∞)/2 = αxx(ω, ∞)/2 of the polarizability tensor 
and tensor of the dynamic polarizability of the 
nitrogen atom in the ground energy state taken from 
Ref. 29. It is worth noting here that in Ref. 29 the 
dynamic polarizability of the nitrogen atom was set 
in the form of Cauchy expansion 

 
∞

=

α ω = − − ω∑ 2

0

( ) ( 2 2) ,n

n

S n  (6) 

where Cauchy moments S(–2n – 2) are determined 
only for n = 0, 1, 2. For this reason the dynamic 
polarizability of the nitrogen atom calculated in Ref. 29 

is underestimated at high frequencies. However,  
the curves in Fig. 7c agree well enough. On the 
whole, it can be stated that the calculated αii(ω, R) 
functions (see Fig. 6) correctly describe the behavior 
of the N2 molecule polarizability at variations of the 
internuclear distance R and frequency ω of the 
external electromagnetic field. 
 

Conclusion 
 
We believe that, despite its simplicity, the 

calculation scheme proposed yields physically correct 
description of the polarizability of a homonuclear 
diatomic molecule as a function of the internuclear 
distance and the frequency of the external 
electromagnetic field. At the same time some remark 
are pertinent concerning the applicability of such an 
approach to calculations discussed. First, this 
calculation technique is restricted to the frequency of 
the first allowed electron transition of the electric 
dipole type. Second, such a technique enables one to 
obtain quite reasonable estimates of the upper bound 
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of the polarizability function and the overestimation 
of these values is determined by the structure of the 
excited electron energy levels of the molecule. 
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