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We consider the problem of laser beam propagation through a medium with its refractive 
index being a univariate function of the coordinate along the beam axis. We show in the paper that 
making use of the paraxial approximation enables one to reduce the task to solving the well known 
parabolic equation the diffusion coefficient in which depends, through the refractive index of the 
medium, on the longitudinal coordinate. This result is a corollary fact of the simplification of the 
rigorous solution and does not depend on the shape and value of the function of the refractive index 
in a wide range. We also derive a number of expressions that may have a practical value in using 
quite general outcomes of this study in practice. 

 

Introduction 

The problem on propagation of acoustic and 
electromagnetic waves through inhomogeneous media 
has been studied since long ago. The results of these 
studies and their use in wide-ranging applications have 
been summarized in a number of basic monographs.1–4  
 Since no rigorous solution of the wave equation 
for the field in an inhomogeneous medium can be 
sought, various theoretical studies do make use, as a 
rule, of different simplified methods. Among those, 
the geometrical optics approximation is apparently 
the best developed one. Detailed discussion of this 
approach can be found in Ref. 1. It is worth noting 
that an analytical solution to this problem can be 
found by use of this approximation only for some 
particular cases the medium inhomogeneity, see, for 
example Ref. 4. 

If the geometrical optics approximation does not 
work, one must take into account diffraction (as, 
e.g., in the problems on laser beam propagation) and, 
normally, try to reduce the task to the scalar 
Helmholtz equation with the wave number 

( / ) ( )k c n= ω r that depends on coordinates. Then this 
equation is solved numerically. Note that such a 
simplification is only justified if the term (see Ref. 1) 
 

  2grad[ grad(ln )]nE   (I.1) 

is negligible, as in the problems with randomly 
inhomogeneous media,2 for which the condition  

  0( ) ( ),n n n= + Δr r  0( )/ 1n nΔ <<r .  (I.2) 

is almost always fulfilled quite accurately. 
In this study we consider same problem on laser 

beam propagation, but through a continuum, whose 
index of refraction depends on a single coordinate, 
say on z, along the direction of beam propagation. 

Such media (sometimes these are called “greens”) are 
interesting themselves5 and in their particular forms 
like, e.g., planar-cross stratified media, a medium 
with a periodic structure, as well as in the simplest 
form of a medium with the refractive index being a 
stepwise function of the coordinate along the beam 
axis. The last case refers to practical applications 
dealing with focusing of laser beams into different 
object from transparent materials. If such an object is 
an anisotropic nonlinear crystal then the applicability 
of the results of this theoretical treatment naturally 
extends to the theory of generation of laser radiation 
harmonics, an important branch of nonlinear optics. 
 Strictly speaking, the main goal of this study is 
just to try to construct a sort of basic model that 
would enable one to accurately, as far as possible, 
account the effect of refraction and longitudinal 
inhomogeneity of a nonlinear crystal on the 
parameters of the second harmonic. In this 
connection, the linear fields in the isotropic media 
are proposed to be considered as an absolutely needed 
zero approximation of the above-mentioned nonlinear 
problem. 

The calculation algorithm is as follows. First, 
the rigorous solution is written of the problem on 
laser beam propagation through a planar-cross 
stratified medium the boundaries between the layers 
in which are orthogonal to the beam axis. Then the 
beam is treated as a slightly diverging one (paraxial, 
that is the beam with a narrow angular spectrum and 
slowly varying amplitude). Based on this assumption 
the rigorous solution becomes much simpler. After 
that, a passage to the limit is performed by making 
the layer thickness to vanish. It is just this limit, 
which represents the general solution of the problem 
formulated in the paper title. In Section 2, we 
consider the task of focusing the laser beam into a 
bounded medium as an illustration that could be of a 
certain practical interest. 
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1. General solution of the problem 
Let the refractive index of the medium be 

dependent only on one coordinate, i.e., n(r) = n(z).  
It is also assumed that at z < 0 the value of the 
refractive index equals to a constant value n0. Let for 
all z > 0 the function n(r) = n(z) be a step function, 
taking the value ni within the layer h(i – 1) < z < hi, 
where h is the thickness of the ith layer. The planes 
z = hi make up the boundaries between the layers. 
Let us also introduce the cross vectors ρi in these 
planes to define the position of a point on the 
corresponding plane. The problem on radiation 
propagation through such a medium reduces to a 
recurrent sequence of solution to the problem of 
radiation refraction on the output boundary of each 
layer and to the problem of radiation propagation 
within the layer. 

The solution to problem on optical field 
refraction on a plane boundary between two media is 
well known1 for the case of plane waves. For any 
plane of plane wave propagation, the complex 
amplitude U of the field can be presented by the 
expansion over the angular spectrum of the plane 
waves. 

 ˆ( , ) ( , )exp[ ],2dU z U z i
+∞

−∞
= ∫∫ρ κ κ κρ  (1) 

where ˆ ( , )U z κ  is the amplitude of the plane wave, κ 
is the transverse, relative to the direction of 
propagation, component of the wave vector. 

As the field amplitude and angular spectrum of 
the field obey a one-to-one relation the task of 
seeking the relation between the amplitude of the 
field ( , )U z ρ  in an arbitrary propagation plane and 

the boundary field 0 0(0, )U ρ  incident on the medium 

can be reduced to seeking the ratio between the 
angular spectra of these fields. 

Let ˆ ( , )1iU z − κ  be the spectrum of the field 
incident on the boundary z = h(i–1) between the 
layers. Then for the spectrum just behind this 
boundary (within the other layer) we obtain, in a 
usual way that  

 ˆ ˆ ˆ( , ) ( , ) ( , ) ( ) ( , ),0 1 1 1 1 1i i i i iU z T z U z T U z− − − − −= =κ κ κ κ κ  (2) 

where 1( )iT − κ  is the Fresnel refractive index of the 
medium for a plane wave. 

The layer between the planes z = h(i–1) and 
z = hi (the ith layer) is, according to the conditions 
of the problem, a homogeneous medium with the 
refractive index ni. Hence within this layer the field 
U must obey the homogeneous Helmholtz equation: 
 

 ΔU + k2ni
2U = 0, (3) 

where k = 2π/λ is the wave number in vacuum. 
Owing to this fact and taking expression (2) as 

the boundary condition, one obtains that the field 
spectrum in the end of the ith layer is related to the 

field spectrum in the end of the preceding layer as 
follows: 

 ( )ˆ ˆ( , ) ( ) ( , ) .2 2 2
1 1 expi i i iU z T U z ih k n− −= −κ κ κ κ  (4) 

The recurrence formula (4) enables one to relate 
the field spectrum at the exit from the Nth layer to 
the spectrum of the field incident on the planar-cross 
stratified medium. After some not very complicated 
transformation we have 

ˆ ˆ( , ) ( ) ( , )exp ,
2

1 2 2
11

0 1
N N

N i i
iii

U z T U ihk n
k n

−
==

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑∏ κκ κ κ  (5) 

where 

 ˆ ( , ) ( ) ( , ) .2 2
0 0 0 0 00 2 d 0 expU U i

+∞
−

−∞
⎡ ⎤= π −⎣ ⎦∫∫κ ρ ρ κρ  (6) 

Substituting expression (5) into Eq. (1) one 
obtains a solution for the amplitude of the field in 
the end of the Nth layer:  

 

ˆ( , ) ( , ) ( )

.

2
1

1

2

2 2
1

d 0

exp 1

N

N N i

i

N

N i
ii

U z U T

i ihk n
k n

+∞

−
−∞

=

=

⎛ ⎞
⎜ ⎟= ×
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥× + −
⎢ ⎥⎣ ⎦

∏∫∫

∑

ρ κ κ κ

κκρ

 

(7)

 

Note that until so far we have not imposed any 
restrictions, however, in deriving expression (7) we 
did not take into account multiple reflections of the 
waves from the boundaries between the layers that 
also contribute into the forward propagated waves. 
 In our discussion below, we shall make use of 
the conditions of small angle (paraxial) 
approximation. Let us consider the case when the 
beam axis coincides with the ÎZ axis, i.e., the case 
of normal incidence of the beam onto the boundary 
between the media. In so doing, we shall assume that 
the refractive index of the medium only slightly 
varies within the angular spectrum of the beam. In 
addition, following the standard conditions of the 
paraxial approximation, we consider the radicand in 
expression (7) to be close to unity. In other words we 
shall make use of the following approximations: 

 1 1( ) (0);i iT T− −≅κ  (8) 

 
2 2

2 2 2 21 1
2i ik n k n

− ≅ −κ κ
. (9) 

In that case solution (7) reduces to the following form 

 

( , ) ( )

ˆ ( , ) .

1

11

2
2 1

0

1

0 exp

d 0 exp
2

N N

N N i i

ii

N

N i

i

U z T ihk n

U i ih n
k

−
==

+∞
−

−∞ =

⎛ ⎞ ⎡ ⎤
⎜ ⎟≅ ×⎢ ⎥
⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

⎡ ⎤
× −⎢ ⎥

⎢ ⎥⎣ ⎦

∑∏

∑∫∫

ρ

κκ κ κρ

 

(10)
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Expression (10) is, in fact, the solution of the 
problem on beam propagation through a stratified 
medium obtained using small angle (paraxial) 
approximation. 

The solution obtained enables one to perform a 
passage to a limiting case of a stratified medium with 
continuous distribution of the index of refraction. Let 
us divide each of the layers into M sub-layers of the 
width Δz = h/M. By making M to tend toward 
infinity, we pass to a continuous medium. In this 
case the summation in the exponential functions 
evidently transforms into integrals over the range. 
 Consider now which form the product of the 
refraction indices takes due to passage to this limit. 
The Fresnel refractive index has the following form 
in the case of normal incidence of the wave onto the 
boundary between the madia1: 

1 1
1

11 1 1 1

1

2 2 1
(0) .

1 0.5

i i
i

ii i i i i

i

n n
T nn n n n n

n

− −
−

−− − − −

−

= = = Δ+ + + Δ +
 

  (11) 

Assuming the ith layer to be narrow enough for 
the following equality  

 1

1 1

1 d
,

( ) d
i

i i

n n
h

n n z z
−

− −

Δ ≅   

to work and dividing this layer into M sub-layers, 
one can write for the product of the refractive indices 
of the sub-layers within the ith layer the following 
expression 

1
11

1

1 d
lim (0) lim 1 0.5

( ) d

1 d
exp 0.5 .

( ) d

MM

i
M M ij

i

n h
T

n z z M

n
h

n z z

−

−
→ ∞ → ∞ −=

−

⎡ ⎤
= + =⎢ ⎥

⎣ ⎦

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

∏
 

(12)

 

Then the product of the refractive indices of all 
the layers takes the following form: 

 

( )

1

1 1 0

1 d
lim (0) exp 0.5 d

( ) d

(0)
exp 0.5 ln ( ) ln (0) .

( )

NzN M

i
M

i j

N
N

n
T z

n z z

n
n z n

n z

−
→ ∞

= =

⎡ ⎤
⎢ ⎥= − =
⎢ ⎥
⎣ ⎦

⎡ ⎤= − − =⎣ ⎦

∏∏ ∫

 (13)

 

As a consequence, the expression (10) for a 
continuous medium takes the form: 

 

( )( , ) ( )
( )

ˆ ( , )
( )

0

2
2

0

0

0
exp d

d
d 0 exp

2

z

z

n
U z ik zn z

n z

z
U i i

k n z

+∞

−∞

⎡ ⎤
⎢ ⎥= ×
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥× − =
⎢ ⎥
⎣ ⎦

∫
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ρ

κκ κ κρ

  

 
0

2
02

0 0

(0)
exp d ( )

( )

( )
d (0, )exp ,

2 2

z
n

ik zn z
n z

k
U ik

iz z

+∞

−∞

⎡ ⎤
⎢ ⎥= ×
⎢ ⎥
⎣ ⎦

⎡ ⎤−
× −⎢ ⎥
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∫

∫∫
ρ ρ

ρ ρ

 

(14)

 

where 
0

d
( )

z
z

z
n z

= ∫ .  

For the case of a plane wave incident on the 
boundary z = 0 expression (14) yields the following 
solution 

 
0

(0)
( , ) exp d ( ) ( )

( )

z

e
n

U z ik t n t U z
n z

⎡ ⎤
⎢ ⎥= ≡
⎢ ⎥
⎣ ⎦
∫ρ . (15) 

This solution exactly coincides with the so-
called etalon solution of the problem on plane wave 
propagation through stratified media.3 For an angular 
narrow beam solution (14) can be presented in the 
following form 

 ( , ) ( ) ( , ),e pU z U z U z=ρ ρ  (16) 

where 

2
02

0 0
( )

( , ) d (0, )exp .
2 2

p
k

U z U ik
iz z

+∞

−∞

⎡ ⎤−
= −⎢ ⎥

π ⎢ ⎥⎣ ⎦
∫∫

ρ ρ
ρ ρ ρ   

  (17) 

Remind that solution (16) has been derived 
while passing to a limit from planar-cross stratified 
to continuous medium. Let us now show the 
conditions under which this solution can be directly 
derived from Maxwell equations for a medium with 
the refractive index being a function of the only z 
coordinate. 

Since we deal with a paraxial beam, it is quite 
reasonable to seek a solution of the Maxwell 
equation for the vector of the electric field strength, 
as an example, in the following form: 

 ( , ) ( , ),E z U z= eρ ρ  (18) 

where e is the constant unit vector of polarization 
orthogonal to the Z axis (ek = 0, where k is the unit 
vector along the Z axis). 

Substituting expression (18) into the wave 
equation of the general form1,4 and taking into 
account that the vector grad(n) is, in our case, 
directed along k vector (hence, term (I.1) vanishes) 
we obtain, after multiplying by the vector e, the 
scalar Helmholtz equation: 

 ΔU + k2 n2(z)U = 0. (19) 

Solution to equation (19) is sought in the 
following form 

 2( , ) ( ) ( , ),e pE z U z U z= μ μρ ρ  (20) 
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where Ue and Up are yet unknown functions; μ << 1 
is the small parameter whose value is on the order of 
magnitude of the beam divergence. 

Substituting expression (20) into Eq. (19) and 
restricting ourselves to the account of only second 
infinitesimal order of μ we finally obtain the 
following equation 

 2 2 2 22 0.p e e e p e pU U k n U U U U U⊥⎡ ⎤∇ + + ∇ ∇ + ∇ =⎣ ⎦  (21) 

Let us take for function Ue the exact solution of 
the problem on plane wave propagation through the 
medium considered here. Let the wave propagate 
along the Z-axis. In this case, this is the exact 
solution of Eq. (19). As a result, the expression in 
brackets in Eq. (21) vanishes and we obtain the 
following equation  

 22 0.e p e pU U U U⊥∇ ∇ + ∇ =   (22) 

Following Ref. 3 we present the function Ue as 
follows: 

 
0

( ) (0) exp d ( ) ( ) ,
z

eU z n ik t n t t
⎡ ⎤
⎢ ⎥= ϕ
⎢ ⎥
⎣ ⎦
∫   (23a) 

where 

 
1/2

1/2
2 3/2

3

1 ( ) 1
( ) 1 ln( ) ,

2
i n

z n
kn n kk n

∞−
ν
ν

ν=

′′ ξ′ϕ = + + + ∑   (23b) 

and the view of functions ξν can be found in Ref. 3. 
Assume that the following conditions hold 

 
1/2

2 2 3/2
3

1 ( ) 1
1 .

2
i n n

z n kkn k n

∞−
ν
ν

ν=

′′∂ ξ>> >> >>
∂ ∑  (24) 

Then, taking only the zero term of the 
expansion (23b) we obtain the approximation 

 ( ) ( ) ( ) .e e eU ikn z U ikn U∇ = ϕ ≅k k  (25) 

By substituting expression (25) into the Eq. (22) we 
obtain the parabolic equation 

 22 ( ) 0,p
p

U
ikn z U

z ⊥
∂

+ ∇ =
∂

 (26) 

whose exact solution is presented by the 
expression (17). 

Taking only two terms of expression (23b) one 
can see that in this case the function Ue transforms 
into the etalon solution (15). Thus, the solutions 
derived by use of both of these ways are identical if 
the conditions (24) hold. 

2. Focusing of the beam into  
a planar-cross stratified medium 
Actually, the general solution of thus 

formulated problem we have already derived in 
Section 1 of this paper in the form of the 

integral (17). Thus now we only have to concretize 
the boundary conditions (to set the functions 

0(0, )U ρ  and the function n(z)). 

Let the boundary condition at z = 0 be as 
follows 

 
2 2
0 0

0 2(0, ) exp ,
2

U A ik
fa

⎡ ⎤ρ ρ= − −⎢ ⎥
⎣ ⎦

ρ  (27) 

where A0, a, f are the real constants; k = 2π/λ. 
The condition (27) defines a Gaussian beam with 

the radius a, which is focused with a thin lens of the 
focal length f. This formula has been derived in the 
paraxial (parabolic) approximation for the plane  
z = 0. We have chosen this particular case only for 
simplicity, because the exact values of the integrals 
in expression (17) can be calculated. 

Let us consider a medium the refractive index of 
which can be presented for all z > 0 in the following 
form: 

 
1, if , ,

( )
( ), if ,

N k

N k

z z z z
n z

n z z z z

< >⎧⎪= ⎨
≤ ≤⎪⎩

 (28) 

where n(z) ≥ 1; zk = zN + L. 
In other words, we deal, in this case, with an 

inhomogeneous medium, which in fact is an infinite 
layer of thickness L confined between the planes 
z = zN and z = zk. The medium outside this 
“inhomogeneous layer” is assumed vacuum. 

It is worth noting here that the above-mentioned 
initial conditions of the problem are quite typical in 
the theory of frequency conversion of laser radiation. 
The only exception is that in this theory a nonlinear 
anisotropic crystal of the length L is taken as an 
inhomogeneous medium. 

As the exact account of the crystal 
inhomogeneity, including the longitudinal one, is of 
great practical interest,6 the results we present in this 
section refer just to the problems of nonlinear optics 
as we have already mentioned in the Introduction. 
 Substituting expression (27) into Eq. (17) and 
taking the integrals one obtains the expression for a 
Gaussian beam focused at any point of the half-space 
z > 0. This solution differs from the known4 derived 
for the case of homogeneous media (for this reason 
we do not give it here) only by that now we have to 
use k = 2π/λ in place of k = 2πn/λ and replace z by  
 

 
0

d
.

( )

z
t

z
n t

= ∫  (29) 

Taking into account expressions (28) and (29) we 
obtain 

 

, if ,

( ), if ,

( ), if ,

N

N N k

k

z z z

z z z z z

z L L z z

<⎧
⎪
⎪= + ϕ Δ ≤ ≤⎨
⎪
⎪ − + ϕ >⎩

 (30) 



678   Atmos. Oceanic Opt.  /September  2005/  Vol. 18,  No. 9 V.V. Kolosov and V.O. Troitskii 
 

 

where 

 
0 0

d d d
( ) ;

( ) ( ) ( )

N

N

z zz

N
z

t t t
n t n t z n t

− Δ

ϕ Δ = = =
′+∫ ∫ ∫  0 ≤ Δ ≤ L  

is the length of the path the beam travels in the 
inhomogeneous medium, n′(t) = n(t + zN). 

It is quite easy to determine, using Eq. (30), the 
dependence of the Gaussian beam parameters on the 
particular view of the function ( ),n t′  so we do not 
consider thus calculated results. We thought it to be 
pertinent to give here some expressions that may be 
useful in treating the tasks of focusing laser beams 
into crystals. 

Note, first that, at least for a Gaussian beam, 
the longitudinal inhomogeneities of the medium do 
not affect its minimum radius amin, which is defined 
by the known relationship4 

 f
min 2

f

,
1

aD
a

D
=

+
  (31) 

where 2
f 2 / .D f ka=  

At the same time, the position of the caustic 
(z = zp) quite strongly depends on the view of the 
function n′(t) chosen. Let us consider this 
circumstance in a more detail. 

According to Ref. 4 the distance zp = zp0 from 
the lens to the caustic of a Gaussian beam in vacuum 
is determined by the following expression4 

 0 2
f

.
1

p
f

z
D

=
+

 (32) 

In our case, we obtain using expression (30) the 
following equation for zp value 

 0

0

d
.

( )

pz

p
t

z
n t

=∫  (33) 

To illustrate the equation (33) let us consider 
the simplest situation with n′(t) = n0. From Eq. (33) 
one can obtain 

0 0

0 0 0

0 0 0

, if ,

( ) , if ,

(1 1/ ), if .

p p N

p N p N N p N

p p N

z z z

z z z z n z z z L

z L n z z L

<⎧
⎪
⎪= + − ≤ ≤ +⎨
⎪
⎪ + − > +⎩

 (34) 

Note that the result in the form of expression (34) 
can easily be obtained by treating refraction of 
separate geometric optics rays of the paraxial beam at 
the plane boundary between two inhomogeneous 
media. 

In making some practical calculations one often 
needs for a solution of the following, in a certain 
sense inverse, problem. Assume that position of the 
caustic is set initially f( ),−∞ ≤ Δ ≤ ∞  from the 
entrance to the inhomogeneous medium. The question 

is to be addressed on the distance, at which the layer 
of an inhomogeneous medium must be placed with 
respect to the lens (that is at which zN) for the 
caustic to be formed at a preset place. To answer this 
question, let us present zp in the form 

 f,p Nz z= + Δ  

and then substitute this formula into Eq. (33). After 
that one obtains by making use of expression (30) the 
result sought 

 

0 f f

0 f f

0 f f

, if 0,

( ), if 0 ,

( ), if .

p

N p

p

z

z z L

z L L L

⎧ − Δ Δ <
⎪
⎪= − ϕ Δ ≤ Δ ≤⎨
⎪
⎪ + − Δ − ϕ Δ >⎩

 (35) 

The length of the beam waist Lp is an important 
parameter of a focused Gaussian beam. Let it be 
defined as follows: 

 1 2,pL L L= − +  (36) 

where L1 and L2 are the distances from the waist 
plane, at which beam diameter exceeds the amin value 
by m > 1 times. If zp has been found from Eq. (33) 
then for L1 and L2 we obtain (of course for a 
Gaussian beam) the following equations: 

 
2 2

1,2 1,2
min2

2
1 ,

z z
a ma

f ka
⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (37) 

where 

  
1

1

0

d
,

( )

pz L
t

z
n t

+

= ∫   
2

2

0

d
.

( )

pz L
t

z
n t

+

= ∫   

In the particular case of 0( )n t n′ =  and Lp ≤ L 
one obtains from expression (37) that  

 2
2 1 0 0 f 1.pL L n z D m= − = −  (38) 

In the case of an arbitrary n(z) function the solution 
of equation (37) can easily be obtained by numerical 
methods. We shall not demonstrate such calculations 
here, while noting that in the general case the shape 
of the caustic of the Gaussian beam will not be 
symmetric with respect to the plane of waist.  

Conclusion 
In our opinion, the most interesting, among 

those presented in the paper, is the following one. 
There exists a certain set of the initial conditions 
(quite likely it is a unique one), which allows the 
problem on laser beam propagation through an 
inhomogeneous medium to be reduced to solution of a 
parabolic equation. It is quite important that the 
accuracy of simple enough analytical expressions 
describing the final result does not worsen even if the 
conditions (I.2) do not hold for sure. Let us 
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summarize again the circumstances, which determine 
the applicability limits of the approach proposed. 

1. The refractive index of the medium depends 
only on one coordinate, z.  

2. The derivatives of the refractive index are 
limited by the conditions (24).  

3. Laser beam propagates along the Z-axis. 
4. The radiation has a narrow angular spectrum 

(paraxial beam). 
5. Light refraction at the boundary between two 

media is considered only for normal incidence. 
Violation of any of these requirements reduces 

to nothing the validity of the tricks used which we 
tried to follow up in the paper. On the other side, all 
the above-mentioned requirements themselves are 
quite typical and this enables us to hope that the 
outcome of this study may have certain practical 
value. In this context, we think that the main 
outcome of the work presented is the possibility  
 

shown of generalizing the results obtained by solving 
parabolic equation for the field in a homogeneous 
medium to the case considered in this paper. 
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