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The series divergence in the perturbation theory should be taken into account in calculation 
of highly excited energy levels of light molecules by the effective rotation Hamiltonian method. For 

calculation of the rotation energy levels for the H3

+

 molecule in the ground vibration state, the well-
known Euler method of series transformation is used. It is shown that the use of the elementary 
approximation function – the diagonal Pade approximant of the first order – allows calculating 
accurately the high energy levels. 

 

Introduction 

The research of rotation-vibration (RV) spectra 

of the H3

+
 molecular ion is of interest for several 

reasons. First, H3

+
 plays a certain part in formation of 

interstellar clouds and ionospheres of giant planets 
such as the Jupiter. As a consequence, molecular lines 
in spectra of various astrophysical objects are easily 

observed.1 Second, H3

+
 is the elementary triatomic 

molecule, consisting of three protons and two 
electrons. It can be ab initio calculated with high 
accuracy. In turn, a comparison with the measured 
spectra allows improving the calculation, for 
example, of non-adiabatic or relativistic corrections.2 

Third, the H3

+
 molecule is a light symmetric top with 

strong non-hardness effects, and it has certain 
features of RV energy spectrum.3 Therefore, the 
studying of IR-spectra of this molecule turns out to 
be useful also for improvement of calculation 
methods: the effective Hamiltonians or the 
variational one.  

 The H3

+
 molecule has a point group symmetry 

D3h, the constant dipole moment is absent. As a 
consequence, spectra in the microwave region, caused 
by purely rotation transitions, are not observed. (Due 
to centrifugal effect, there are a low ∼ 10–4 D dipole 
moment and a weak rotational spectrum). Moreover, 
the excited electronic states are decayed or weekly 
connected, perturbed by predissociation; the UV 
spectra are represented by the diffusive bands free of 
a clearly defined structure. Thus, a highly accurate 
experimental information about the molecule can be 
derived only from the analysis of its RV- spectra.  

It is necessary to take into account that in 

calculations of RV energy spectrum of H3

+
 by the 

method of effective rotation Hamiltonian, the 
rotation leads to a strong perturbation of states and a 
bad convergence of series representing matrix 
elements of the effective Hamiltonian. The 
application of special summation methods, in 
particular, the Pade approximations method or 

Pade–Borel one allows taking into account these 
strong non-hardness effects (see, for example, 
Refs. 4–9). In this work, to solve the problem of 

series divergence for the lower vibration state of H3

+
, 

the well-known Euler generalized transformation 
method10–15 is applied. Earlier, this method was 
successfully applied to solving various problems, in 
which the series of perturbation theory (PT) were  
diverged.11,12 

1. Euler generalized transformation  
of PT series 

Consider the application of the Euler method to 
the series summation.10–12 Briefly, the basic relations 
of this method are reduced to the following. Let the 
expansion 
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If the approximating function g(λ) is chosen 
successfully, so that a

n = fn/gn → 1 at n →∞  fast 
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enough, then the transformed series converges even if 
the initial series is diverged. This is the advantage of 
the Euler method. The method allows using the PT 
expansions at a suitable choice of the approximating 
function including all physically significant moments 
of the solved problem even if these expansions are 
strongly divergent series.  

Earlier, the Euler transformation was 
successfully applied to summation of the perturbation 
theory divergent series in some quantum-mechanical 
problems, for example, for calculation of energy 
levels of anharmonic oscillator, calculations of Stark 
and Zeeman effects for the hydrogen atom in strong 
fields, summation of 1/Z-expansion in the atom 
theory (see, for example, Ref. 12). It is proved that 
the Euler generalized transformation is a regular 
summation method,16 i.e., it yields correct sum values 
for the convergent series.  

It is necessary to take into account some 
moments connected with a specificity of the effective 
Hamiltonians method application to calculations of 
molecular RV-spectra. Usually, only a few first 
coefficients 0 1, ,..., pf f f  are known in the initial PT 

expansion. In this case, the transformed series 
coefficients will be determined by the formula  
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for n > p. The parameter a should be chosen 
depending on a specificity of the problem.  

2. Effective rotation Hamiltonian  

of the H3

+
 ground vibration state 

The molecule H3

+
 in equilibrium configuration is 

an equilateral triangle, representing a flattened 
symmetric top with a point group symmetry D3h. 
There exist two normal vibrations, ν1 and ν2, the 
latter is double degenerated. The vibration energy 
levels are determined by three quantum numbers 

1 2,
l

ν ν  the rotation energy levels – by two – ,J G  

(G = |k – l|). The rotation energy levels of H3

+
 

ground vibration state in view of symmetry 
properties are determined by the formula3  
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According to the Pauli principle, the k = 0, J = 2n 
levels are forbidden, in particular, the level 
corresponding to the JK = 00  state is absent, so 

the states 10  and 11  are the least in energy. 

Therefore, the first term in Eq. (4) is a lower level 
energy of the molecule’s ortho-modification, and the 
second term determines the difference between lower 
levels of the ortho and para states. The subsequent 
terms represent the rotation energy and centrifugal 
corrections. The last term in Eq. (4) is connected 
with level splitting at 3.k = ±  

 Rotational and centrifugal constants of H3

+
 were 

determined in several works, for example, in Ref. 3. 
It is marked in this work that the expression for 
rotation energy in the form of a standard series of the 
perturbation theory well describes rotation energy 
levels only in the range of quantum number values 
used in the fitting. The predictive calculations for 
great values of J or G do not give a satisfactory 
result because of the bad convergence of series (4).  
  Using the data from Ref. 3, it is possible to 
determine approximately the position of energy 
features considered as a function of rotation quantum 
numbers and to determine the convergence radius (if 
it is not zero) for series (4). For this purpose we use 
the so-called one-dimensional approximation of the 
effective Hamiltonian,7 according to which series (4) 
can be written as:  
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  (6) 

and the formal parameter λ, assumed equal to unity 
in finite formula, is introduced. A direct calculation 
with the parameters taken from Ref. 3, shows that 
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the expression (5) (except for the first term) is sign-
alternating up to the term proportional to λ2. As is 
generally known,17 this is due to the fact that 
centrifugal constants , ,...JJ JGD D  are determined by 

expansion of tensor elements of the inertia inverse 
moments with some additives connected with the 
Coriolis forces and anharmonicity of vibrations. It is 
possible to assume, that the centrifugal effect is the 
strongest for the lower vibration state of the light 

molecule H3

+
, and the whole PT series (5) is sign-

alternating. 
To estimate the convergence radius, we use the 

Pade approximant [1/1] and determine (for each 
value of J) the G2 values, at which the approximant 
denominator vanishes. The results are given in Fig. 1.  

 

 
Fig. 1. Positions of poles (circles) of Pade approximant 
[1/1] for the series (5). A continuous line corresponds to 
G = J quantum number.  

 

 It is seen, that for small J values the poles are 
at G ≈ 14, for high values they are rather close to the 
levels G = J. Just this circumstance determines the 
series (5) divergence.  

3. Summation of the effective 

Hamiltonian series  

As it was earlier shown,18 application of the 
Pade approximants for calculation of rotation-
vibration energy levels of the H3

+
 molecule gives 

much better results than the use of expansions (5) 
and (6). Therefore, we apply the diagonal Pade 
approximant of the first order P[1/1](λ) over λ as an 
approximating function. The transformed, according 
to relations (3), series (5) with approximant  
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Using Eq. (3), it is also possible to receive easily a 
general expression for the coefficients of the 
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Since centrifugal corrections a1 < 0  and a2 > 0, the 
denominator in Eq. (9) does not vanish at λ > 0. The 
new variable Z has a sign-alternating expansion in 
Taylor's series by λ degrees and the poles at the same 
values of G, as in the above estimations, thus 
“simulating” peculiarities of the function E(J, G). It 
is obvious, that the transformed series has no longer 
peculiarities accounted for by the new variable. This 
circumstance together with | Z | < 1 provide for a 
better convergence of the transformed series as 
compared to the initial series (5). The power series in 
the right part of equality (8) can also be summarized 
by some method, for example, the Levin rational 
approximations,19 many-valued Pade–Hermite 
approximations,20 etc.  

The performed calculations have shown that the 
transformed series (8) gives approximately the same 
values as the initial one (5) for energy levels, from 
which the rotation and centrifugal constants were 
determined. For energy levels with great values of J 
and G, the expression (8) gives the values close to 
the results of variational calculations. The calculation 
results on energy levels at 1G =  and G J=  in 
comparison with the data from Refs. 3 and 21 are 
presented in Figs. 2 and 3.  

As is seen in Fig. 3b, the transformed series 
gives quite satisfactory values for high rotational 
energy levels. At the same time, the formula (5) 
considerably overestimates values of energy for the 
states with 11.G J= >  

 

 

Fig. 2. G = 1 energy levels of the H3

+

 molecule. Variational 
calculation (daggers), calculation with the transformed 
series (8) (continuous line), calculation with initial 
series (5) (dashed line (almost completely coincides with 
continuous line)). 



À.D. Bykov and T.V. Kruglova Vol. 18,  No. 9 /September  2005/ Atmos. Oceanic Opt.   719 
 

 

 
a 

 
b 

 
c 

Fig. 3. G = J energy levels of the H3

+

 molecule. Variational 
calculation (daggers), calculation with the transformed 
series (8) (continuous line), calculation with initial 
series (5), α = 2.26 (dashed line). 

 

It is useful to note, that a minimum of 
experimental information was used here for the series 
transformation: the values of rotation and centrifugal 
constants, received in traditional model (5) by fitting 
to the levels with J <11.  

Conclusion  

With the help of the Euler generalized 
transformation, a new representation for the energy  
 

of ground vibration state of the H3

+
 molecule in the 

form of a functional series is obtained, that 
corresponds to the partial summation of initial series 
in the perturbation theory. The calculations show 
that the transformed series gives more exact 
predictions of energy levels for great values of 
rotation quantum numbers, than traditional 
representation of energy in the form of power series, 
even without usage of fitting parameters.  
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