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We present a numerical model of a ground-based telescope, whose optical system incorporates 

an adaptive system of compensation for image distortions. The model allows us to take into account 
two distorting factors: misphasing of the telescope’s segmented primary mirror and the atmospheric 
turbulence. 

 

1. Plane-wave model 

To study correction for distortions in the 
adaptive-optics telescope, one needs to simulate 
propagation of radiation from an extraterrestrial 
source (an astronomic object), i.e., to develop a 
plane-wave model. With respect to a numerical 
experiment, construction of such a model implies 
simulation of an object that would possess the 
properties of a plane wave, i.e. the wave whose 
amplitude and phase in free space are constant in the 
planes specified by the equation 

 rk = const. (1) 

Here r is the radius-vector of a point in the plane; k 
is the wave vector.1 

As was shown in solving the problem of wave 
propagation in vacuum (see Fig. 1) the central part 
of a Gaussian beam exhibits just these properties. It 
is seen from this figure that the amplitude and phase 
in the beam center practically do not differ from 
those in a plane wave.  

A disadvantage of this approach is a low (as 
compared with the rest of the computational grid) 
diameter of the part, where a Gaussian beam can be 
considered a plane wave. For example, on a 
256 × 256 point grid, the size of the area, where the 
beam amplitude variation does not exceed 3%, is 
12 × 12 points. With such parameters, it is hardly 
possible to simulate turbulent distortions and estimate 
anisoplanatism2 of the propagation paths. 

A “planer” distribution of the amplitude is 
characteristic of a super Gaussian beam. However, 
because of the diffraction, a super Gaussian beam 
undergoes significant changes, and the size of its 
“plane” part becomes smaller, so the passage to this 
radiation type does not allow one to considerably 
increase the size of the computational grid. 

For further investigations, we propose that a 
model of a super Gaussian beam is used as a 
substitute of a plane wave, which propagates under 
conditions, when diffraction of the beam as a whole 
is excluded, while the diffraction on the 

inhomogeneities of the refractive index of the 
medium is taken into account.  
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Fig. 1. A plane wave simulated as the central part of the 
Gaussian beam: initial (z = 0) distribution of the amplitude 
and phase of the beam (cross section) on a 256 × 256 grid 
(a, b); initial (z = 0) distribution of the amplitude in the 
central part of the beam, a 12 × 12 grid (c, d); distribution 
of the amplitude and the phase (the central part) of the 
beam that has traveled a distance of half a diffraction 
length, a 12 × 12 grid (e, f). 
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Fig. 2. Diffraction-free propagation of a super Gaussian beam in vacuum: initial (z = 0) distribution of the amplitude (a, b) 
and the phase (c);   distribution of the amplitude (d, e), and the phase of the beam (e) after its propagation. 

 

If a medium is non-distorting and the absorption does 
not have a marked effect, then this model provides 
for equal distributions of the amplitude in the plane 
z = 0 and in any other plane irrespective of the 
distance to the source aperture. An example of beam 
propagation at eliminated diffraction is shown in 
Fig. 2. 

To eliminate diffraction, we placed a set of 
closely spaced focusing lenses along the propagation 
path (Fig. 3). 
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Fig. 3. Schematic representation of the beam propagation 
under conditions of free diffraction (a) and at an eliminated 
diffraction (b). 
 

The focal length of each of the lenses was 
calculated so that the diffraction broadening could be 
fully compensated for. 

Regardless that free diffraction is eliminated, 
any other phase perturbations will still influence the 
beam. For example, if in the initial wave front 
distribution we artificially introduce a singular point, 
it will cause changes in the amplitude and phase 
profiles. Atmospheric turbulence also induces changes 
in both the radiation amplitude and phase (Fig. 4). 
 The computational grid, where the beam was 
considered a plane wave, was 80 × 80 points, and the 
total grid together with the buffer space was 
256 × 256 points. The radiation passed only through 

one phase screen. The initial distribution of the field 
amplitude was uniform. At the distance z > 0 behind 
the phase screen (the screen was positioned in the 
plane z = 0, Fig. 4c ) we observed modulation of the 
amplitude distribution (Fig. 4b). 

The phase profile of the wave reflects (since 
diffraction caused by inhomogeneities is still assumed 
to occur) variations of the refractive index in the 
screen. The phase distribution is shown in Fig. 4d. 
 As is demonstrated by numerical experiments, 
for small (compared to diffraction length) paths these 
properties are characteristic of the central part of a 
Gaussian beam as well. The main difference with the 
above plane wave model is that solution of the 
problem that involves a beam requires a much larger 
buffer zone. 

2. The model of a ground-based 
telescope. Account of the distorting 

factors 

The plane-wave model developed has allowed us 
to easily construct an ideal (i.e., neglecting the 
restrictions imposed by a wave-front sensor and an 
adaptive mirror) model of a ground-based telescope. 
The calculation scheme of the numerical experiment 
performed with the use of the model is shown in 
Fig. 5, wherefrom we see that the plane wave 
generated by an extraterrestrial source is incident on 
the layer of distorting medium and, having passed 
through it, the radiation undergoes the amplitude 
and phase modulation. Then the light flux is focused 
with the primary mirror. Turbulent disturbances of 
the refractive index cause distortions of the image 
constructed in the focal plane. The distortions are 
compensated for by phase control of the radiation 
wave front. 
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Fig. 4. Propagation of the plane wave in a turbulent medium: initial distribution of the amplitude (a); distribution of the 
amplitude after propagation through the medium (b); turbulent changes of the refractive index (c); wave phase after 
propagation (d). 

 

Now let us list some other applications of the 
model. With a few modifications done it allows one 
to analyze the effect of anisoplanatism of the 
radiation arrival angle from the source and the 
reference wave; to estimate the resolution needed for 
discerning binary stars depending on the intensity of 
turbulent distortions; to develop the methods that 
would allow allocation of a low-intensity source near 
a bright object to be done. Another class of problems 

involves the effect of the elements of adaptive system 
on the imaging quality. For their solution we can use 
the models of the Hartmann sensor and an elastic 
deformable mirror.3,4 

Now consider briefly one more source of 
distortions in the telescope, namely, random 
displacements of the segments of the primary mirror. 
Loss of quality of the image due to misphasing is 
demonstrated in Fig. 6, which shows the cross 
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sections of focused radiation at different variances of 
random displacements of the segments. These 
distributions are normalized to the diffraction-limited 

intensity. In Fig. 6, we can see lowering of the 
height of the principal maximum and appearance of 
additional maxima. 

 

 
Fig. 5. The model of the adaptive telescope. 
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The corresponding reduction of the Strehl ratio 
is illustrated in Fig. 7, from which we can compare 
the results obtained in the numerical experiment with 
the theoretical ones. R. Tyson in his monograph5 says 
that to estimate distortions, we can use the formula, 
according to which the Strehl ratio is exponentially 
dependent on the variance:  

 St = exp(–σ
2). 

 

 
a 

 
b 

 
c 

 
d 

Fig. 6. The cross section of the focused radiation spot in the 
telescope at the distribution normalized to the value of 
diffraction-limited intensity. The variance of random 
displacements equals λ/4 (à), λ/2 (b), 3λ/4 (c), and λ (d). 
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Fig. 7. The Strehl ratio as a function of random shifts 
variance normalized to the radiation wavelength: theoretical 
results (curve 1); results of the numerical experiment  
with a mirror having 32 × 32 segments  (curve 2) and  
8 × 8 (curve 3). 
 

In Fig. 7, this dependence corresponds to 
curve 1. Our simulation shows that with the increase 
of the displacement amplitude in the telescope the 
criterion decreases much faster (curves 2 and 3, 
Fig. 7). 

However, the displacements of the segments 
result not only in a decrease of the St criterion. 

Without normalization, one can see, in the intensity 
distributions, a periodic structure with a pronounced 
central peak and secondary maxima (Fig. 8). 
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Fig. 8. Structure of the image (without normalization): the 
mirror of 8 × 8 segments and the variance of the random 
displacements equals λ (a); 32 × 32 segments and the 
variance equals λ (b). 

 

The distortions caused by random tilts of the 
segments have similar character. The way they 
manifest themselves is illustrated in Fig. 9. 
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Fig. 9. Cross section of the image in the telescope at 
random tilts of segments. Phase shift within one segment 
equals one wavelength. The numerical model included an 
8 × 8-segment mirror, normalization of the distribution is 
performed to the diffraction-limited intensity value (a) as 
well as the distribution without normalization (c). For the 
32 × 32-segment mirror, a normalized distribution (b) and 
distribution without normalization (d) have also been 
calculated. 
 

Like in the above case, misphasing in the mirror 
leads to losses in intensity and to appearance of 
secondary maxima.  

Somewhat different is the character of 
distortions for the mirror with a larger number of 
segments (32 × 32, Figs. 9b and d). In this case, the 
above periodic structure undergoes changes in the 
intensity  that has a larger period and higher maxima. 
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Fig. 10. Mutual influence of distortions (turbulence and misphasing; turbulent distortions are averaged over 50 realizations).  
Cross section of the focused radiation (curve 1); diffraction-limited distribution (curve 2). 
 

Overall, we may conclude that random 
displacements and tilts of the segments lead to strong 
image distortions. In particular, for the displacements 
with the variance comparable to one wavelength, the 
Strehl criterion decreases by five times and lower as 
compared with the diffraction-limited value. 

The effect of turbulence and misphasing on the 
distribution of the focused radiation is illustrated in 
Fig. 10. As is seen, the above periodic structure is 
smeared and it is now hardly possible to discriminate 
between the contributions of separate distortion 
sources. 

3. Phasing of a segmented mirror  

A segmented mirror is usually phased using 
mechanical (capacitance- or inductive-type) sensors of 
segment displacements6,7 in combination with the 
optical methods. We propose to abandon sensors via 
extending of the operation range of purely optical 
methods (so, to apply only optical methods). Thus 
the phasing algorithm is simplified and, perhaps, 
becomes more cheap. 

Reduction of the segment displacement can be 
performed through the procedure of searching for the 
functional extreme, which is set by the expression 
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This parameter shows to what extent the 
interferogram obtained at reflection of a laser beam 
from the neighboring segments differs from the 
interferogram observed at a zero displacement (thus, 
the value of the ratio is determined with the use of 
the reference interferogram obtained at a zero relative 
displacement). In Eq. (2), A1(x, y) stands for the 
distribution of the optical filed intensity in the 
reference interferogram, and A2(x, y) is the intensity 
distribution for the interferogram of the mirror with 
displaced segments. At the exactly matched 
interferograms, Jcor(z) = 1 and starts decreasing with 

the increase of the differences between the two 
patterns. 

In the numerical experiments performed, we 
have shown that the phasing accuracy is determined 
by the initial displacement Δz: at Δz < λ/2, the 
mirror surface obtained via arrangement of segments 
is flat, and at Δz > λ/2 the algorithm gives the 
increase in the relative displacement. Changes in the 
relative segment displacement for both of the cases 
are shown in Fig. 11. 

 
0.8 

0.6 

0.4 

0.2 

0 

–0.1 

Δz

2

1

1 3 5 7 9  11 13 N

 

Fig 11. Changes in the relative displacement of the mirror 
segments Δz during the aperture sensing (the wavelength  
λ = 0.8 µm). N is the iterative step number. Δz = 0.367 µm 
(curve 1), Δz = 0.433 µm (curve 2). 

 
Extension of the tolerance range of the initial 

displacements is possible with introduction of an 
additional wavelength to the control algorithm. The 
values of the ratio Jcor specified in Eq. (2) and 
calculated at a change with respect to the segment 
displacement (scanning) for the wavelengths λ = 0.6 
and 0.8 µm are shown in Fig. 12. 

This diagram shows that the physically equal 
displacements of segments gives different phase shifts 
for different wavelengths, that is why the ratio 
maxima coincide only at Δz = 0 and 2.4 (–2.4) µm. 
Note that 2.4 is the smallest number that can be 
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divided by 0.6 and 0.8 without a remainder. In this 
case, phase shifts will be 8π and 6π, respectively. 
Therefore, introduction, into the algorithm, of the 
requirement that the control stops only after the 
maximum of the ratio has been found at the two 
wavelengths, allows us to increase the dynamic range 
of compensation for the random displacements. 

 

 

Fig. 12. Dependences of the ratio Jcor on the relative 
displacement of mirror segments Δz: λ = 0.6 µm (curve 1),  
λ = 0.8 µm (curve 2). 

 
A further extension of the range is obtained via 

proper choice of the wavelengths of interfering beams 
and by introducing third wavelength. The data on 
the intervals of tolerable deviations are given in  
Table 1.  

Table 1. The maximum displacement Δz,   

at which mirror phasing is possible; λi are  
the wavelengths at which the  control is performed 

λ1, µm λ2, µm λ3, µm Δz, µm 
0.8 – – 0.36 
0.6 – – 0.26 
0.6 0.8 – 2.34 
0.7 0.8 – 5.55 
0.6 0.7 0.8 33.4 

 

The results given in Table 1 allow us to 
conclude that the method described in this paper 
makes it possible to greatly increase the range of the 
optical methods of phasing. 
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