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We consider the polarization effects occurring inside a focusing lens as well as due to 
formation by this lens of an asymmetric wave front of a spherical converging wave. We formulate the 
requirements to the experiment that would favor observations of the polarization effects occurring 
inside the lens that yield the deviation of a focused beam across the focal waist. Using numerical 
simulations, we have optimized parameters of the initial wave front. For this purpose, the inverse 
problem is considered on optimizing parameters of the converging wave front at a preset distribution 
of radiation across the focal waist. The parameters of the field on the spherical surface are calculated 
using the relation between the wave front in the focal waist and on the spherical surface obtained 
using direct and inverse Fourier transforms. 

 

Introduction 

It was theoretically predicted1 that if circularly 
polarized radiation passes through an axially 
symmetric optical lens made of an isotropic 
substance, the lower half of which is opaque, the z-
component of electromagnetic radiation deviates to 
the left or to the right from the symmetry axis 
depending on the sign of the polarization. The 
deviation should change the sign, if the upper half of 
the lens becomes opaque, while the lower becomes 
transparent. The cross-shift of the focal waist was 
experimentally confirmed in Ref. 2. The longitudinal 
component of electric field E was determined in 
Ref. 1 from the condition divE = 0. For mathematical 
description of the situation when the intensity of 
radiation in the upper part of the lens is higher than 
in the lower one, solution of the Helmholtz equation 
was approximated by linear combination of the 
functions describing 1s- and 2p- states. 

The effect considered in Ref. 2 was quite weak. 
Therefore, to make this spin effect stronger, we 
suggest to change, a little bit, conditions of the 
experiment. For this we suggest to measure the ratio 
between the power of light incident on the left 
( 0)x ≤�  and on the right ( 0)x ≥�  half planes of the 
focal plane instead of measuring the center of the  
z-component. Here, the x�  and y�  axes are, 

respectively, parallel to the x and y axes of the 
spherical wave surface (at Δ << F2, where F is the 
focal length of the lens, and Δ is the area of the 
segment). The spin effect considered can be made 
more strong if the parameters of the spherical wave 
front are optimized using, for example, “Linza” 
software product the description of which, including 
results of testing, are presented in Ref. 3. Thus 
obtained results are compared with the experimental 
results.2 

The method for calculation of the intensity 
distribution in the image space was proposed and 

numerically realized3 for a Gaussian lens model based 
on the Green’s function method.4 The following 
problems are considered as tests: imaging of a square-
shaped object area, diffraction on an infinitely long 
slit,5 focusing of a converging wave with a Gaussian 
profile of the amplitude in the area of the focal 
waist,6 imaging of a surface analogous to diffraction 
grating. 

The disadvantage of the aforementioned 
approach is that it is quite difficult to choose the 
parameters of the initial wave front on the spherical 
surface, which would yield the wave with the 
prescribed properties in the focal waist area. To 
enhance the spin effect more, it is suggested in this 
paper to analytically determine the parameters of the 
wave front on the spherical surface (at the distance 
of the radius of the spherical surface) on the basis of 
direct and inverse Fourier transform, that would 
provide for achieving the prescribed properties of the 
wave in the focal waist area. This is the inverse 
problem compared to the aforementioned problem, 
when the parameters of the wave front in the image 
area are to be determined having known the 
parameters of the spherically convergent wave front. 
Besides, in this paper we consider another class of 
polarization effects in lenses. We have calculated the 
parameters of the wave front on the spherical surface 
that provide the transverse anisotropy of the 
intensity of the longitudinal component of radiation 
in the focal waist area, and the anisotropy changes its 
orientation at the change of the sign of circular 
polarization. 

The effect similar to the aforementioned one was 
considered in Ref. 7. It was shown that if the 
conditions formulated in Refs. 1 and 2 are fulfilled, 
the beam displaces inside a focusing lens by the 
distance comparable with the wavelength of 
radiation. Unfortunately, the conditions of the 
experiment2 do not allow one to observe the 
predicted effect,7 because in this case the parallel 
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beam displacements perpendicularly to the axis does 
not affect the position of the center of the focused 
beam spot. To experimentally study the predicted 
effect,7 it is necessary that the anisotropy of the beam 
be observed in the lens only on the side of the 
incident beam, while no anisotropy should occur 
along the cross coordinates in the back side of the 
lens. To do this, it is necessary to turn the system 
forming the anisotropy of the lens on the side of the 
incident beam by 180°. In this case, the center of the 
focused beam displaces by the length comparable 
with the wavelength of radiation. The effect is 
determined by the sign of circular polarization, and, 
in contrast to the effect described in Refs. 1 and 2, 
the cross components of the radiation take part in it. 
Let us consider the enumerated problems. 

1. Polarization effects caused  
by anisotropy of intensity  

of the longitudinal component  
of radiation in the focal waist area 

Let us show that one can observe another class 
of polarization effects by means of a lens. It is the 
cross anisotropy of the intensity of the longitudinal 
component of radiation in the focal waist area, which 
changes the orientation with the change of the sign 
of circular polarization. The longitudinal component 
of the electric field in the focal waist area can be 
determined from the condition1 divE = 0: 

 , ( ) .z x y

i
E i

k
⊥ ⊥ ⊥= ∼ + ΨE E e e∇  (1) 

It is seen from expressions (1) that for determining 
the value of the cross deviation of the longitudinal 
component in the focal waist area, it is necessary to 
know the cross component of the field in the waist. 
 Let we know the amplitude of the field ( )f ⊥r  in 

the focal waist, where 2 ( , )r x y⊥ = � � . Having known 

( ),f ⊥r  one can analytically determine the parameters 

of the wave front at the focal length. Let us derive 
the analytical solutions. Let us assume that 
propagation of radiation can be described by the 
scalar wave equation 
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where ( 0, ) ( );z f⊥ ⊥Ψ = =r r  β = 2π/λ, λ is the light 

wavelength in vacuum, Δ⊥ = ∂2/∂x2 + ∂2/∂y2. 
Using direct and inverse Fourier transforms, we 

obtain from the Eq. (2) that 
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where ( )f ⊥k  is the Fourier image of the function ( ).f ⊥r  

It follows from Eq. (3) that the wave amplitude 
at the point ( , )z ⊥r  is unambiguously determined by 

the wave amplitude at the focal waist area 
( 0, ) ( ).z f⊥ ⊥Ψ = =r r  

Let us take the following functions as the wave 
amplitudes in the focal waist area: 

 2 2

1 1( ) exp( /(2 ) )f F r a i xy⊥ ⊥= − + κr �  

 2 2

2 2( ) exp( /(2 ) )mf F r r a im⊥ ⊥ ⊥= − + ϕr .  

According to expressions (1), the following 
intensities of the longitudinal component of the field 
Ez correspond to such amplitudes: 
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It follows from Eq. (5) that in the case of 

1( )f ⊥r  some ellipsoids correspond to the longitudinal 

intensity |Ez|
2 with the ellipticity being the highest at 

2
aκ =�

 and determined by the sign of circular 

polarization σ. In the case of 2( )f ⊥r  it is necessary that 

2

z
E  be equal to zero. If this condition holds then, 

according to Eq. (5), the longitudinal intensity either 
increases or decreases depending on the sign of σ. 

Taking the inverse Fourier transform of 1( )f ⊥r  

and 2( ),f ⊥r  we obtain by formulas (4) with the 

account of Eq. (3) that 
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The following relationship8 was used when 
deriving the second relationship of the system (6): 
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2. Mathematical simulation  
of the effect of cross shift  

of the focal waist caused by the sign 
of circular polarization 

To optimize the experimental conditions for 
observation of the aforementioned polarization effect, 
we have made a series of calculations using “Linza” 

(4)

(5)

(3)
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software package. The final purpose was to optimize 
the parameters of spherically converging asymmetric 
wave front necessary for observation of the effect in 
the focal waist area. To do this, the amplitude of the 
cross component of the field was set, according to 
Ref. 1, on the rectangular spherical segment 

 3 00 01( , ) ( , ) ( , ),x y M x y M x yΨ = + α  (7) 

where α is the complex number. The functions 

00( , )M x y  and M01(x, y) have the form 

 2 2 2

00 exp{ ( )/[2( ) ]},M x y a= − + Δ  

  2 2 2

01 exp{ ( )/[2( ) ]}.
y

M x y a
a

= − + Δ
Δ

  

Calculations were performed for radiation with the 
wavelength λ = 0.63 μm, Δa = 0.25 ⋅ 104 μm, 

–0.5 cm ≤ x ≤ 0.5 cm; –0.5 cm ≤ y ≤ 0.5 cm;  

Δx × Δy = 250 × 250 points; 

0.001 cm 0.001 cm; 0.001 cm 0.001 cm;

300 300 points.

x y

x y

− ≤ ≤ − ≤ ≤

Δ × = ×

� �

� �

 

The cross component of the filed was determined 
by “Linza” program in the image plane ,x� .y�  The 

longitudinal component (z-component) was calculated 
by formula (1) (see Ref. 1) 

 ( , ) ( , , 0)
z

i
E x y i x y z

k x y

⎛ ⎞∂ ∂
∼ + σ Ψ =⎜ ⎟

∂ ∂⎝ ⎠
� � � � �

� �

, (9) 

where σ = ± is the sign of circular polarization. 

The intensities 
2

1 ( , 0)
z

I E x yσ=± = =� �  of the 

longitudinal fields are shown in Fig. 1 as functions of 
x�  at y� = 0 for α = 1, Δa = 0.25 cm. 
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Fig. 1. Intensities 

2

1 ( , 0)
z

I E x yσ=± = =� � as functions of x� at 

α = 1: σ = 1 (curve 1); σ = –1 (2). 

It is seen from Fig. 1 that the maxima of the 
intensities are shifted relative each other by 
Δ x�  ≈ 0.00063 cm ≡ 6.26 μm. The curves overlap 
quite strongly. As it is supposed to experimentally 
determine not the shift of the maxima of intensities 
Iσ=±1, but the value of power incident on the left 
x�  ≤ 0 and right x�  ≥ 0 half-planes, the power was 
also numerically determined: 
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where 1, 1 2, 1 1.W Wσ=± σ=±+ =  At α = 1 expression (7) 

yielded 1, 1 2, 1 2, 1 1, 1/ /W W W W
σ= σ= σ=− σ=−

=  ≈ 0.27. As α 

increases, the distance Δ x�  between the maxima 
increases, as is seen in Table 1. This strengthens the 
effect under study. However, as α decreases, the 
ratios of the secondary maximum to the main one K 
and the value 1, 1 2, 1 2, 1 1, 1/ /W W W W

σ= σ= σ=− σ=−
=  

increase, while the value ( 0, 0)
z

E x y= =� �  decreases 

(it is well seen in Fig. 2), what leads to weakening 
of the considered effect. As α increases, the values K 
and 1, 1 2, 1 2, 1 1, 1/ /W W W W

σ= σ= σ=− σ=−
=  decrease, that 

strengthens the effect, but the effect is weakened due 
to the decrease of the distance Δ x�  between the 
maxima. Thus, the considered effect as the problem 
of optimization over several parameters has no 
extreme. So, one should choose the parameters 
depending on the conditions of experiment. 

 

Table 1 

No. of 
calculation

α
2

( 0, 0)
z

E x y= =� �  , mxΔ μ�  K 1, 1 2, 1/W W
σ= σ=

1 0.1 0.0151 9.34 0.7514 0.8134 

2 0.2 0.0526 8.94 0.5650 0.6654 

3 0.3 0.1034 8.54 0.4257 0.5506 

4 0.4 0.1609 8.26 0.3215 0.4631 

5 0.6 0.2804 7.46 0.1854 0.3505 

6 0.7 0.3377 7.2 0.1417 0.3170 

7 0.8 0.3918 6.94 0.1090 0.2945 

8 0.9 0.4421 6.54 0.0843 0.2805 

9 1.0 0.4883 6.26 0.0656 0.2731 

10 1.1 0.5307 6.0 0.0514 0.2707 

11 1.2 0.5691 5.74 0.0406 0.2722 

12 1.3 0.6040 5.6 0.0323 0.2767 

13 1.4 0.6356 5.34 0.0259 0.2833 

14 1.5 0.6642 5.2 0.0210 0.2917 

15 1.6 0.6899 4.94 0.0171 0.3012 

16 1.7 0.7133 4.8 0.0140 0.3116 

17 1.8 0.7345 4.54 0.0116 0.3226 

18 1.9 0.7536 4.4 0.0097 0.3340 

19 2.0 0.7709 4.26 0.0082 0.3456 

(8)

(10)
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Fig. 2. Intensities 

2

1 ( , 0)
z

I E x yσ=± = =� �  as functions of x� at 

α = 0.1: σ = 1 (curve 1); σ = –1 (2). 
 
The dependence of xΔ �  on Δa at α = 1 is given 

in Table 2 for the initial signal (7). 
 

Table 2 

Δa, cm 0.1 0.15 0.17 0.21 0.23 0.25 0.27 0.31 0.33

, mxΔ μ�  12.4 8.4 7.6 6.7 6.4 6.26 6.26 6.13 6.13
 

Δa, cm 0.35 0.41 0.43 0.45 0.47 0.51 0.53 0.55 0.63 0.67

, mxΔ μ�  6.13 6.26 6.4 6.4 6.4 6.54 6.54 6.54 6.8 6.8

 
The amplitude of the cross component of the 

field was set on the rectangular spherical segment 
and at the same parameters of the lens and radiation 
 

 2 2 2

4( , ) exp( [ ( ) ]/[2( ) ])x y x y a aΨ = − + − Δ , (11) 

where  

0.5 cm ≤ x ≤ 0.5 cm; –0.5 cm ≤ x ≤ 0.5 cm; 
Δx × Δy = 250 × 250 points; 
–0.001 cm ≤ x�  ≤ 0.001 cm;  
–0.001 cm ≤ y�  ≤ 0.001 cm; 

300 300x yΔ × Δ = ×� �
 points, Δa = 0.25 cm. 

The field (11) is the Gaussian beam of the width a 
with the center at the point x = 0, y = a. It was 
taken in calculations that a = 0.1, 0.2, and 0.4 cm. 

As is seen from relations (7) and (11), at α << 1 
and a/(Δa) << 1, the function Ψ4 is transformed  
to Ψ3 at α = a/(Δa). Therefore, the qualitative 

dependences of 
2

( 0, 0) ,
z

E x y= =� �  ,xΔ �  K, and 

1, 1 2, 1/W W
σ= σ=

 on a  for Ψ4 coincide with the 

dependences of these values on α for Ψ3 (Table 3). 
 

Table 3 

No. of 

calcu-

lation 

a 
2

( 0, 0)
z

E x y= =� �  
xΔ � , 

 μm 
K 1, 1 2, 1/W W

σ= σ=

1 0.5Δa 0.2149 7.86 0.2503

8 

0.40 

2 Δa 0.4549 6.54 0.0787 0.27 

3 2Δa 0.6784 5.06 0.0188 0.26 

Table 3 presents the dependences of 
2

( 0, 0) ,
z

E x y= =� �  ,xΔ �  K, and 1, 1 2, 1/W W
σ= σ=

 on a for 

the Gaussian profile of the cross component of the 

field (11) where max ( , ) 1
z

E x y =� �  and Δa = 0.25 cm. 
 

3. Cross shift of the beam due  
to the effects occurring inside  

the focusing lens 

Let us show that in the case of a lens the cross 
shift of the beam occurs due to spherically 
converging wave front, which is formed both after 
the lens (in this case the spherical front is formed by 
means of the lens, i.e., the lens is the passive 
element) and inside the lens. In Ref. 7 the equation 
was obtained of the beam trajectory in the presence 
of the gradient of intensity along the direction 
perpendicular to the trajectory: 

ln ln
ln ( ) ( ln ) ,

4

n
n

s k s s

⎡ ⎤∂ σ ∂ ∂ ρ
= × × − × + ρ×⎢ ⎥∂ ∂ ∂⎣ ⎦

S
l S S S∇ ∇ ∇   

  (12) 

where ρ = (μ/ε)1/2 is the impedance. The first term 
in square brackets in Eq. (12) describes the cross 
shift of the beam in an inhomogeneous medium in the 
case when a functional dependence of the Umov–
Poynting amplitude on the cross coordinates exists. 
Indeed, let us assume that 

 0× = × ≠S F S∇  (13) 

then, according to Eq. (12), the vector S at 
∂lnn/∂s = 0 turns towards the direction parallel to 
the vector l × F, and the value of the deviation is 
determined by the sign of circular polarization. 
Moreover, the cross shift can exist even in the case of 
a linear path of the beam. 

In should be noted that formula (12) was 
obtained assuming that the value ∂lnn/∂s has no 
breaks. Therefore, one cannot quantitatively 
determine the cross shift of the beam at a stepwise 
change of the refractive index n. In this case one can 
proceed to limit assuming that n changes from n1 to 
n2 within a narrow interval Δs. Then, according to 
Eq. (12), the angle of the cross deviation of the beam 
is as follows 

 2 1[ /(4 )] ln / ,k n nϕ = σ ×l F  (14) 

where ⏐F⏐ = const. One should expect that in the 
case of a stepwise change of n the cross shift is 
comparable with the value given by Eq. (14) 
(Fedorov effect8,9 is not taken into account). 

It is interesting to note that in the case of 
n1 → n2 → n1 the direction S does not change, but 
the beam shifts across the axis by the distance d. In 
the case of a transparent plate, one should expect 
that  

 2

2 1

1

ln , ,
4

n
d h n n

k n

σ
≈ × >l F  (15) 

where h is the plate thickness. 
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Let we have a plano-convex lens, and the light 
is incident onto the plane side of the lens, and the 
back side is convex. Let the wave front1 be formed at 
the plane side: 

 0; ( , ) [1 / ( )]S W x y W y a s= = + αS l , (16) 

where W0(x, y) is a symmetric function of the 
variables x and y. At α << 1 we obtain, from Eq. (16) 
and taking into account the expression (13), that 

 / ( 0).
x

a s× = − α =l F e  (17) 

Let W(x, y) on the back side of the lens be a 
symmetric function of the variables x and y (to 
achieve this, one should turn the system forming the 
wave front (16) by 180° relative to the symmetry 
axis). Let also the wave vector of radiation incident 
on the lens be perpendicular to the plane surface of 
the lens. In this case, according to expression (15), 
the wave front inside the lens shifts by the distance 
d. As the value W at the back side of the lens is a 
symmetric function of y, no cross deviation due to 
the considered effect occurs. The wave front on the 
back side deviates from the linear path only 
according to the Snell’s law.10 As the wave front 
inside the lens is plane, the radiation is focused on 
the focal plane, and the focal waist is at the distance 
Δx = nfd/h from the symmetry axis, where f is the 
focal length of the lens. Then we obtain from 
expressions (15) and (17) that 

 2 2 1( )/[4 ( 0)]ln / .x n f ka s n nΔ = σα =  (18) 

Let α = 0.1, λ = 0.63 μm, f = 30 cm, n1 = 1, 
n2 = 1.46, and a(s = 0) = 2 cm. Then the cross shift 
2Δx of the focal waist is equal to 0.44 μm at the 
change of sign σ. It is seen that the cross shift of the 
beam due to the polarization effect in the lens is 
comparable with the radiation wavelength. 

Conclusion 

Possible polarization effects in lenses are 
theoretically studied and numerically simulated in 
the paper. The parameters of the spherically 
converging wave front necessary for observation of 
the effect are calculated in order to determine 
optimal conditions for observation of the effect. It 
follows from the numerical results that for the wave 
front (7) corresponding to the case of a lens with an 
opaque half, both the distance xΔ �  between maxima 

of the intensity of the z-component of radiation (that 
leads to intensification of the effect) and the ratio of 
the secondary maximum to the main one K and the 
value 1, 1 2, 1 2, 1 1, 1/ /W W W W

σ= σ= σ=− σ=−
=  (that leads to 

weakening of the considered effect) increase at 
decreasing α. Thus, the considered problem is 
reduced to the problem of optimization over several 
parameters. For the wave front (8), the dependence 
of intensity of the longitudinal component of 
radiation on the cross coordinates is the same at for 

the wave front (7). The parameter a in Eq. (8) plays 
the same role in the effect under study as α  
in expression (7). The problem for the field 
amplitude (8) is also reduced to the problem of 
optimization over several parameters. 

Thus, the polarization effects are theoretically 
considered in this paper, which can be observed for 
the longitudinal component of radiation in the focal 
waist area, the polarization effects in the waist are 
observed due to anisotropy along the transverse 
direction of the longitudinal component of radiation. 
The cross distribution of the radiation field in the 
focus is considered as described within this approach, 
and the field parameters on the spherical surface are 
calculated using the relationship between the wave 
front in the focal waist area and on the spherical 
surface obtained by means of direct and inverse 
Fourier transforms. 

It is shown in this paper based on the equation 
obtained in Ref. 7 describing the effect of cross shift 
of the beam in the presence of the anisotropy of the 
intensity of radiation across the beam, that a 
transformation of the wave front on the front and 
rear sides of a lens is possible such that the cross 
components of the radiation in the focus displace 
across the beam axis, and the direction of the 
displacement is determined by the sign of circular 
polarization of the incident radiation and the linear 
magnitude of the deviation is comparable with the 
wavelength of radiation. As applied to the plane-
parallel plate made from a transparent substance, the 
effect leads to the cross shift of the beam, and the 
beam trajectories before and after the plate remain 
parallel. 
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