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New moment relationships between the function of wave front aberrations of an optical 
system and numerical characteristics (moments) of intensity distribution in the image are obtained. 
These are used as a basis for the method of wave front reconstruction from images of a source  
in several parallel planes. 

 

Introduction 

Among the methods of wave front (WF) 
reconstruction in an optical system (OS), the method 
based on analysis of images of a point source in 
several planes, parallel to the focal plane, is the 
simplest-to-realize and, at the same time, most poorly 
studied. 

If WF distortions are presented in the form of 
the expansion into a series over some system of basis 
functions with unknown coefficients, then the 
problem of WF reconstruction reduces to the 
estimation of these coefficients from images or image 
functionals. 

Let ( , )exp[ ( , )]G A k= ξ η Φ ξ η  be the OS pupil 

function, describing the amplitude A(ξ, η) and phase 
Φ(ξ, η) distortions of the wave field at any point 
(ξ, η) of the area of the exit pupil Ω; k = 2π/λ is the 
wave number. Denote the intensity distribution in the 
image plane z = const (z = 0 corresponds to the focal 
plane) as I(x, y, z). 

There are several approaches to WF 
reconstruction from images: 

1. To find the wave function G from the known 
distributions I(x, y, zs), 1, ,s S=  in a limited area. 
 2. To find the function of aberrations Φ  from 
the known distributions I(x, y, z

s), 1, ,s S=  in a 
limited area and the amplitude A. 

3. If the function of aberrations is specified by 
the partial sum of the series  

 ( ),k kcΦ = ϕ ξ η∑ ; 

to estimate the coefficients kñ
�  (modes) in the form of 

image functionals ( )kñ I�  at the known or unknown 

amplitude. 
The most flexible method for the solution of 

problems 1 and 2 is the method, reducing their 
solution to the geometrical problem of finding the 
common point of the given sets. Problem 1 can be 
solved in the geometrical treatment by the numerical 
Fienup algorithm1 or the algorithm of increased 

dimensionality,2 problem 2 can be solved by the 
Gerchberg–Saxton algorithm3 and the algorithm of 
increased dimensionality. The solution of problem 3 
can be retrieved from the solution of problems 1 and 
2, or it can be solved independently by the iteration 
method.4–6 Problem 3, however, allows the solution 
to be sought in the explicit form. One of such 
approaches is based on the calculation or 
measurement of image functionals of the form  

 
( )d 0

d d
d

k
p q

k

I
x y x y

z

+∞

−∞

∫ ∫ . (1) 

This method, called the moment method,7,8 
employs the linear relationships, connecting grad Φ 
with the values (1). 

In this study, new relationships have been 
obtained. They have more general form than Eq. (1) 
and relate the function of WF aberrations to the 
numerical characteristics (moments) of the intensity 
distribution in the image. A mathematical apparatus 
based on the functions of a complex variable is 
proposed. For this reason, it has become simpler to 
find the explicit dependence of the estimates kñ

�  on 

the image functionals. 

1. Generalized moment relationship  

Let a remote point source be on the optical axis 
of an optical system and R be the radius of the ideal 
wave front (Gaussian sphere). The transverse 
aberrations r  of the rays in the focal plane are 
related to the wave aberrations through the equality9: 
 

 gradr R= Φ . 

The point ( , )r x y=  in the focal plane conforms to a 

set of points in the pupil  

 ( ) {( , ) : grad ( , ) }.r R rΩ = ξ η ∈ Ω Φ ξ η =  

The set ( )rΩ  determines the elements of the 

distorted wave front, whose radiant energy is 
transported by the rays, passing through the point .r  
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The energy I(x, y) dxdy, transported by the rays from 
the set ( ),Ω r  passes through the element dxdy, 

including the point .r  In geometrical optics, we have 
the energy equality  

 2

( , ) ( )

( , )d d ( , )d d .
r

I x y x y A

ξ η ∈Ω

= ξ η ξ η∑  

Let ( )rϕ  be a function of (x, y). This function may 

be complex-valued. The energy element I(x, y) dxdy 
has a moment  

( ) ( )

2

,

( , ) ( , )d d ( grad ) ( , )d d
r

x y I x y x y R A

ξ η ∈Ω

ϕ = ϕ Φ ξ η ξ η =∑  

 2

( , ) ( )

[ grad ( , )] ( , )d d .
r

R A

ξ η ∈Ω

= ϕ Φ ξ η ξ η ξ η∑  

The total moment of all energy elements is  

 
2

( , ) ( , )d d

[ grad ( , )] ( , )d d .

x y I x y x y

R A

+∞

−∞

Ω

ϕ =

= ϕ Φ ξ η ξ η ξ η

∫ ∫

∫∫
 

(2)

 

It is just this expression we call the generalized 
moment relationship. For the power-law function 

p q
x yϕ = , equality (2) was proved within the frames 

of the wave theory of light in Refs. 7 and 8 for a 
sufficiently smooth pupil function and in Ref. 8 using 
geometrical optics without the requirement of the 
smooth amplitude A. 

Moment relationship in the complex form  

The points of the pupil plane (ξ, η) and the 
focal plane (x, y) determine the complex variables 

( )/ exp( )i a iζ = ξ + η = ρ θ  and ( / )( ),w a R x iy= λ +  

where a is the characteristic size of the exit pupil. 
The function of aberrations can be represented in the 
form  

 ( )Re ,Φ = λ Ψ ζ ζ , (3) 

where the function Ψ has the derivative with respect 
to its arguments. Then  

 / ( / )Re( / / ),a∂Φ ∂ξ = λ ∂Ψ ∂ζ + ∂Ψ ∂ζ  

 
/ ( / )Re ( / / )

( / )Im( / / ).

a i

a

∂Φ ∂η = λ ∂Ψ ∂ζ − ∂Ψ ∂ζ =

= λ −∂Ψ ∂ζ + ∂Ψ ∂ζ
 

The vector grad Φ specifies a complex-valued 
function  

 
( / )[( / ) / ]

( / / )

R a

R i x iy

λ ∂Ψ ∂ζ + ∂Ψ ∂ζ =

= ∂Φ ∂ξ + ∂Φ ∂η = +
 

of the variable ζ. Hence, it follows that WF 
distortions, deflecting light rays, define the function 
of a complex variable 

 ( ) ( / ) / ,w w= ζ = ∂Ψ ∂ζ + ∂Ψ ∂ζ  

which maps the points of the exit pupil into the 
points of the focal plane. The moment 
relationship (2) in the complex form is as follows 

 
2 2

( ) ( , )d d

[ ( )] ( , ) d d .

w I x y x y

a w A

+∞

−∞

Ω

ϕ =

= ϕ ζ ρ θ ρ ρ θ

∫ ∫

∫∫
 

(4)

 

Representation of the primary aberrations  
in a complex form 

The general WF tilt introduces the following 
component into the function Φ: 

 ( ) ( )1

1/ cos sin Re ,A B CΦ λ = ρ θ + ρ θ = ζ  

where C = A – iB, and defines the transformation 

 1 1

1 1( / ) .w C= ∂Ψ ∂ζ =  

Astigmatism introduces the component  

 ( ) ( )2 2 2 2

2/ cos 2 sin 2 ReA B CΦ λ = ρ θ + ρ θ = ζ  

and defines the transformation 

 2

2 2 .w C= ζ  

Coma introduces the component  

 1 2 2

3/ [ cos( ) sin( )] ReA B CΦ λ = ρ ρ θ + ρ θ = ζ ζ  

and defines the transformation 

 1 2

3 2 .w C C= ζζ + ζ  

Defocusing and spherical aberration introduce the 
components 

 0 2

2/ (2 1) (2 1),A AΦ λ = ρ − = ζζ −  

 0 4 2 2

4/ (6 6 1) [6( ) 6 1]A AΦ λ = ρ − ρ + = ζζ − ζζ +  

and define the transformations 

 0

2 4w A= ζ  and 0

4 12 (2 1).w A= ζ ζζ −  

Complex representation of transformations, 
corresponding to Zernike polynomials 

In the case of a circular pupil of the radius a, 
the function of aberrations is often expanded into a 
series over the Zernike polynomials. Every 
component of the expansion in the real form looks 
like9: 

 ( , ) ( )[ cos( ) sin( )],m m m m

n n n n
V R A m Bρ θ = ρ θ + θ  

where 

  
( )/2

2 22
,

0

( ) ( ) ( ),

n m n m
s

m m m m m

n n s n

s

R D r

−
−

−

=

ρ = ρ ρ = ρ ρ∑  

n – m ≥ 0 is an even number and 
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 ( ) ( )
,

1 !/ ! ! ! .
2 2

sm

n s

n m n m
D n s s s s

+ −⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − − −⎜ ⎟ ⎜ ⎟⎢ ⎥

⎝ ⎠ ⎝ ⎠⎣ ⎦
 

Assuming ,m m m
n n nÑ A iB= −  we obtain the complex 

form of the terms of the expansion over the Zernike 
polynomials: 

 Re ( ),m m m m
n n nV C r= ζ ζζ  

defined by the functions 

 ( , ) ( ).m m m

n n
rΨ ζ ζ = ζ ζζ  

The terms of the series define the transformations 

( ),m

n
w ζ  whose form depends on m and n. At 

n > m = 0 

 0 0 02 ( )
n n n

w A r ′= ζ , 

where 0( )nr ′  is the derivative with respect to the 

variable .ζζ  

At n = m > 0 

 1
.

m m m

m n
w mC

−= ζ  

At n > m > 0 

 1 1( ) ( ) .m m m m m m m m

n n n n n n
w C mr r C r

− +⎡ ⎤′ ′= ζ + ζζ + ζ⎣ ⎦  

The transformations ,

m

n
w  corresponding to the 

primary aberrations, were obtained in Ref. 9. The 

transformations ,

m

n
w  presented in a complex form are 

more obvious and general. The circles ρ = const are 
converted with the aid of the transformations into 
the curves, referred to as aberration ones. The 

transformation 0

nw  gives the identical extension to the 

radius vectors of the points on the circle ρ = const. 
Therefore, the aberration curves are circles. The 

transformation m

m
w  performs the mentioned extension, 

rotation by an angle arg ( 2) ,m

m
C m+ − θ  and symmetry 

about the real axis. 

The transformation , 1l
nw n > , reduces to the 

following: uniform extension, rotation by an angle 

arg
l
nC + θ , and shift by the value of the lth term in 

the equation for l
nw . Therefore, the aberration curves 

of the transformation l
nw  are shifted circles. 

The transformation , 1,m

n
w n m> >  can be written 

in the form  

{ }2(1/ ) ( ) [ ( ) ] ( )m m l m m l m m m m m
n n n n n nw C mr r C r

− − ′ ′= ζ ζζ + ζζ + ζ  

and it is a composition of two transformations: 

 (1/ ) ( ) ,m m l m
n n lw w

−= ζ ⊗  

where the transformation ( )m
n lw  is analogous to the 

transformation ,

l
nw  in which the rotation is 

performed by an angle arg (2 ) .m

n
C m l+ − θ  

Determination of the Zernike modes from  
the intensity distribution in the image space  

The moment relationship (4) is written for the 
focal plane. If a measurement is carried out in a non-
focal plane z ≠ 0, then at small z this measurement 
corresponds to the intensity in the focal plane if the 
pupil function is modified by the phase factor9: 

 2 2exp[ ( /2 ) (2 1)].ik a R z− ρ −  

This change reduces to the change of the Zernike 

defocusing coefficient 

0

2 ,A  which should be replaced by 

 
0 0 2 0

2 2 2

2

( ) ( /2 ) / (1/8 ) ,

( / ) .

A z A a R z A z

z k a R z

= − λ = − π

=

 

Having the intensity I(x, y, z), we have to find 

the Zernike modes .

m

n
C  One of the ways to solve this 

problem consists in the following. For different ϕ, we 
have to compose the system of equations from the 
relationships (4) with the known left-hand side for 
the determination of the modes. The right-hand side 
of Eq. (4) includes the amplitude À, which should be 
measured or determined from the intensity I(x, y, z) 
by using the corresponding moment relationships.8 

 In the ideal case, to solve the problem on 
determination of the modes, we have to select such 

functions ,

m
nϕ  at which the left-hand sides of the 

relationships (4) immediately give the estimates of 

the mode .

m

n
Ñ�  No solution of this form is known yet. 

However, for the case that the amplitude is 
independent of the angular coordinate A = A(ρ), it 
will be shown that for any m = m0 it is possible to 
construct such linear combinations of the 

moments (1), which depend only on the modes 0
.

m
nÑ  

This means that the modes corresponding to different 
m can be determined separately. 

Let the function of aberrations taking into 
account the controlled defocusing z be determined by 
the partial sum of the series  

 Re[ ( , ) (1/8 ) (2 1)],zΦ = λ Ψ ζ ζ − π ζζ −  

where 

 
( )

0

( , ) ( , ).
M N m

m m

n n

m n m

C

= =

Ψ ζ ζ = Ψ ζ ζ∑∑  

The WF distortion corresponds to the transformation  
 

 

( )

0

( , ) ( ) (1/2 )

( ) (1/2 ) .

N mM

m

n

m n m

w w z w z

w z

= =

= ζ = ζ − π ζ =

= ζ − π ζ

∑∑
 

Take the function ϕ equal to ( ) ,

k l l
w w w

+

ϕ =  0 ≤ k ≤ M. 

It corresponds to the moment relationship (4) of the 
form  
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( ) ( )

( ) ( ) ( )

2

2 2

, , d d

, , d d .

k k l l
k l

k l l

M z w w I x y z x y

a w z w z A

+∞

+

+

−∞

+

Ω

= =

= ζ ζ ρ ρ ρ θ

∫ ∫

∫∫

 

Since ( ),w zζ  linearly depends on ,z  the moment 

( )2

k
k lM z
+

 is a polynomial of degree k + 2l in terms  

of .z  
With the aid of the Leibniz formula for the 

higher derivative of a product, we find that  

( 2 1) ( ) ( 1)
0

1
[ ( , ) ( , )] ( ) ( )

2 1
k l l k l k l k l l l

z

l
w z w z w w

k l

+ + − + + −

=

−⎛ ⎞
ζ ζ = +⎜ ⎟+ −⎝ ⎠

 

( )( 1)( ) ( )
2 1

lk l k l l
l

w w
k l

+ + −
⎛ ⎞

+ =⎜ ⎟
+ −⎝ ⎠

 

 
2 1

1
1 1

( )! ! ( )
2 1 2

k l

k l l
l

k l l w
k l

+ −

+ −
−⎛ ⎞ ⎛ ⎞= + − ζ ζ ζ +⎜ ⎟ ⎜ ⎟+ − π⎝ ⎠⎝ ⎠

 

2 1

11
( )! ! ( )

2 1 2

k l

k l l
l

k l l w
k l

+ −

+ −
⎛ ⎞ ⎛ ⎞+ + − ζ ζ ζ =⎜ ⎟ ⎜ ⎟+ − π⎝ ⎠⎝ ⎠  

 

2 1

1 1

( 2 1)!( 1/2 )

[ ( ) ( ) ( )].

k l

k l l k l l

k l

l w k l w

+ −

+ − + −

= + − − π ×

× ζ ζ ζ + + ζ ζ ζ

 

Therefore 

 ( 2 1) 2 1 2
2[ (0)] ( 2 1)!( 1/2 )k k l k l

k lM k l a
+ − + −

+
= + − − π ×

 

2 1

1 1 2

0 0

[ ( ) ( ) ( )] ( ) d d .k l l k l l
l w k l w A

π

+ − + −× ζ ζ ζ + + ζ ζ ζ ρ ρ ρ θ∫ ∫  (5) 

Consider the integral over θ in the equality (5): 

2

0

2( )

1 1

0 0

[...]d

[ ( ) ( ) ( )]d
M N m

k l l m k l l m
n n

m n m

l w k l w

π

π

+ − + −

= =

θ =

= ζ ζ ζ + + ζ ζ ζ θ =

∫

∑∑ ∫

 

 {
( ) 2

1 1

0 0

[ [ ( ) ]

N mM

k l l m m m m m
n n n

m n m

l C mr r

π

+ − −

= =

′= ζ ζ ζ + ζ ζ +∑∑ ∫  

 }1( ) dm m m

n n
C r

+ ′+ ζ θ +  

 

( ) {

}

2

1 1

0

1

[ ( ) ]

( ) d ]

k l l m m m m m
n n n

m m m
n n

k l C mr r

C r

π

+ − −

+

′+ + ζ ζ ζ + ζ ζ +

′+ ζ θ =

∫
 

 
{

( )

}

2

1 1

0 0

[ [ ( ) ]

( )

N mM

m m k l l m m k l l m
n n n

m n m

m k l m l m
n n

l C mr r

C r

π

+ + − − + +

= =

+ +

′= ζ ζ + ζ ζ +

′+ ζ ζ +

∑∑ ∫
 

 
( ) {

}

2

1 1

0

1

[ ( ) ]

( ) d ].

m k l m l m k l m l m
n n n

m m k l m
n n

k l C mr r

C r

π

+ − + − + +

+ +

′+ + ζ ζ + ζ ζ +

′+ ζ ζ θ

∫
 

A nonzero contribution comes from the 

integrals, which depend only on the product .ζζ  

At k = 0  

 [ ]
( )2 0

0 0

00

... d 8 ( ) ( ) .

N

l
n n

n

lA r

π

=

′θ = π ζζ∑∫  

At k ≠ 0 

 [ ] {
( )2

00

... d 2 ( ) ( )

N k

k k l k
n n

n

C l r

π

+

=

′θ = π ζζ +∑∫  

 }1( )[ ( ) ( ) ( ) ]k l k k l k
n nk l k r r

+ − + ′+ + ζζ + ζζ =
 

 
( )

1

0

2 [( 2 )( ) ( ) ( ) ( ) ].

N k

k k l k k l k
n n n

n

C k l r k l k r
+ + −

=

′= π + ζζ + + ζζ∑  

Taking into account the integrals over θ, we obtain 
the following form of the derivatives at k = 0: 

 
( )

( )

0 2 1

2

10

2 0 2 0 2

2 2

0 0

[ (0)]

(2 1)!
4 ( ) d ,

( 2 )

l
l

N

l
n nl

n

M

l
a l A r A

−

−

=

=

−
′= − ρ ρ ρ ρ

− π
∑ ∫

 
(6)

 

at k ≠ 0 

2 1 2

2 2 2

( 2 1)!
[ (0)]

( 2 )

k k l
k l k l

k l
M a

+ −

+ + −

+ −
= − ×

− π
 

( )
2 0 2( 1) 2

0 0

( 2 ) ( ) ( ) ( ) d .

lN k

k k k l
n n n

n

C k l r k k l r A
+ −

=

⎡ ⎤′× + ρ + + ρ ρ ρ ρ⎣ ⎦∑ ∫  

  (7) 

The relationships (6) and (7), written at 
different l, serve for separate determination of the 

coefficients k
nÑ  at a given k. The relationship (6) 

results from Eq. (7) after multiplication by two. 

Determination of the primary aberrations  
from the moment relationships  

Let the wave front be determined only by the 
primary aberrations 

 
{

}

0 0 2

2 4

1 1 2 2

1 3 2

Re (2 1) [6( ) 6 1]

(3 2) .

A A

C C C

Φ = λ ζζ − + ζζ − ζζ + +

+ ζ + ζζ − ζ + ζ
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Then at k = 0 and l = 1, 2 we have a system for the 

determination of 0

2A  and 0

4 :A  

0

2

1 1

2 0 2 2 0 2 2 2

2 4

0 0

[ (0)]

8 ( ) d 3 (2 1) ( ) d ,

M

a A A A A

′ =

⎡ ⎤
⎢ ⎥= − ρ ρ ρ ρ + ρ ρ − ρ ρ ρ
⎢ ⎥
⎣ ⎦
∫ ∫

 

 

( )

( ) ( )

0 2

4 2

1 1

0 4 2 0 4 2 2

2 4

0 0

3!
[ (0)] 16

2

d 3 (2 1) d .

M a

A A A A

′′′ = − ×
π

⎡ ⎤
⎢ ⎥× ρ ρ ρ ρ + ρ ρ − ρ ρ ρ
⎢ ⎥
⎣ ⎦
∫ ∫

 

At k = 1 and l = 1, 2 we have a system for the 

determination of 1

1C  and 1

3:C  

1 1

1 2 1 2 1 2 2

1 1 3

0 0

(0) 2 ( ) d (6 2) ( ) d ,M a C A C A

⎡ ⎤
⎢ ⎥= π ρ ρ ρ + ρ − ρ ρ ρ
⎢ ⎥
⎣ ⎦
∫ ∫  

 

1

3

1 1

2 1 2 2 1 2 2 2

1 3

0 0

[ (0)]

/ 2 ( ) d (15 4) ( ) d .

M

a C A C A

′′ =

⎡ ⎤
⎢ ⎥= π ρ ρ ρ ρ + ρ ρ − ρ ρ ρ
⎢ ⎥
⎣ ⎦

∫ ∫
 

At k = 2 and l = 0 we have equations for the 

determination of 2

2 :C  

 

1

2 2 2 2 2

2 2

0

[ (0)] 4 ( ) d .M a C A′ = − ρ ρ ρ ρ∫  

2. Application of the complex 
representation of WF to the problem 

on the reconstruction of modes  
from the data acquired with  

a Hartmann sensor  

In the Hartmann sensor, the WF local tilts are 
measured at a discrete set of points of the exit pupil 
ω. The problem is to estimate the function of 
aberration from its gradient at a discrete set ω. There 
are several methods to solve this problem. One is to 
represent the function Φ as a section of a series over 
some system of basis functions with unknown 
coefficients, which are found by the least-squares 
method. Selecting the system of basis functions 
essentially effects the calculation of the serial 
coefficients. In this section, we propose such a series 
expansion of the function Φ, which, in our opinion, 
significantly simplifies the calculation of the sought 
coefficients. 

Let the function Φ be specified by Eq. (3), in 
which the complex function Ψ is represented by the 
partial sum of the series of the following form: 

 ( )
0

.

M

m m

m

C

=

Ψ = ζζ ζ∑  (8) 

To be determined are the real C0 and complex Cm 

coefficients, depending on the argument 2.ζζ = ρ  The 

representation of Φ by the equalities (3) and (8) 
includes the expansion over the Zernike polynomials. 
The Hartmann data define the values of the 
transformation w(ζ) on ω. Taking into account 
Eq. (8),  

 0 1 1

1

( ) 2 ( ) [ ( ) ] ( ) .

M

m m m m m

m

w C mC C C
− +

=

′ ′ ′ζ = ζ + ζ + ζζ + ζ∑  

It is assumed that from the values of w(ζ) on ω it is 
possible to estimate w(ζ) at the points 
ζk = ρexp(i2πk/N), 0 ≤ k ≤ N – 1, where the natural 
number N = 2M + 1 is determined by the sampling 
theorem. Then at the point ζk  

 

0 2

1

( ) ( ) 2( )

exp( 2 / ) ( )

exp[ 2 ( )/ ] ( ),

k k k

M

m

m

N m

w w C

i km N a

i k N m N a

=

−

′ζ = ζ ζ = ρ +

+ − π ρ +

+ − π − ρ

∑  

where we used the designation  

 2 2( ) [ ( ) ], ( ) ( ) .m m m m m

m N ma mC C a C
+

−
′ ′ρ = ρ + ρ ρ = ρ  

Assume that 0 2

0 2( ) ,a C ′= ρ  then  

 ( )

0

1

1

1

0

( ) ( ) exp( 2 / ) ( )

exp( 2 / ) ( )

exp( 2 / ) ( ), 0, 1.

M

mk

m

M

N m

m

N

m

m

w a i km N a

i k N m N a

i km N a k N

=

−

=

−

=

ζ = ρ + − π ρ +

+ − π − ρ =

= − π ρ = −

∑

∑

∑

 

It follows from this equality that the values of 

( )kwζ  are the coordinates of the vector of the 

discrete Fourier transform of the vector 

(a0(ρ), …, aN–1(ρ)), and therefore  

1

0

( ) (1/ ) exp( 2 / )( ) , 0, 1.
N

m k

k

a N i km N w m N

−

=

ρ = π ζ = −∑  

Thus, from the values of w(ζk) it is possible to 
find the values of am(ρ) and from them to obtain  

 2 0

02 ( )Ñ a′ρ =   (9) 

and 

 2( ) ( ) ( ), 1, .m m

m N mm C a a m M
−

ρ ρ = ρ − ρ =  (10) 

The equalities (10) directly determine the values 

of 2( ),m m

Cρ ρ  entering into the expansions (3) and (8). 



G.L. Degtyarev et al. Vol. 19,  No. 7 /July  2006/ Atmos. Oceanic Opt.   599 
 

 

The equality (9) determines only the derivative of the 

coefficient 0 2( ),Ñ ρ  which should be used to estimate 

the coefficient itself, characterizing the rotation-
symmetric component of the wave front.  

Conclusions 

The method of derivation of the moment 
relationships (2) and their applications form the 
theoretical basis for the development and justification 
of algorithms for reconstruction of WF modes from 
images of a source. The expansions (3) and (8) are 
rational in the sense that the Hartmann data and the 
coefficients of the expansion are related by a simple 
dependence, viz., by discrete Fourier transform. In 
this case, the integration is needed only to find the 
coefficient, corresponding to the zero frequency. 
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