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A method is proposed, which allows the solution of the second-harmonic generation (SHG) 
problem in a uniaxial nonlinear crystal to be presented as a double integral in the approximation of a 
preset field at the fundamental frequency. This fact makes the final analytical equation simpler and 
more convenient for practical use than the known Boyd–Kleinman approximation. Within the 
frameworks of the method proposed, the problem of SHG by use of a laser beam focused with crossed 
cylindrical lenses into a crystal is solved. It is shown that, in a certain case of practical interest (ray 
optics approximation), the equation for the second-harmonic field can be written through elementary 
functions and is free of quadratures. 

 

Introduction 

Owing to the number of unique properties of the 
output radiation, metal-vapor lasers are now finding 
a wide-ranging application in research and 
technology. The range of applications can be 
extended significantly by using not only fundamental 
frequencies of these lasers, but also their harmonics 
lying usually in the UV spectral region. The most 
promising from this viewpoint (being more powerful) 
are copper vapor lasers,1 emitting simultaneously at 
two wavelengths, green (510.6 nm) and yellow 
(578.2 nm). With these lasers, using a nonlinear β-
BaB2O4 (BBO) crystal, one can obtain the discretely 
tunable radiation at three wavelengths: 255.3 nm 
(second harmonic (SH) of the green line), 289.1 nm 
(SH of the yellow line), and 272.2 nm (sum 
frequency of the two fundamental lines). It is clear 
that the practical significance of this approach 
depends directly on the efficiency of nonlinear 
conversion, but certain problems arise here. 

The point is that the output pulse power of 
metal-vapor lasers, operating in the kilohertz region 
of the pulse repetition frequencies, is not high 
enough to ensure the considerable manifestation of 
nonlinear effects in the crystals known by now. 
Nevertheless, it is possible to improve the situation 
with these lasers and to obtain practically significant 
efficiencies of the nonlinear conversion (even with 
low-power radiation2,3), if the laser beam is focused 
into a crystal in an optimal way. The aim of this 
paper is just the theoretical study of this issue. 

It is known (see, for example, Ref. 4) that the 
maximum efficiencies of harmonic generation 
processes should be expected in the case of the 
cylindrical focusing of a laser beam into a nonlinear 
crystal. The term “cylindrical focusing” is understood 
in the most general sense as creation of such 
conditions, at which the divergence of the laser beam 

appears to be significantly different in two mutually 
orthogonal planes. The principal optical plane of the 
anisotropic nonlinear crystal is taken as one of these 
planes. It should be noted in this connection that we 
restrict this consideration to only uniaxial media 
possessing quadratic nonlinearity. The cylindrical 
focusing can be realized in different ways, using 
different number of optical elements, but we consider 
only one, the most general case (including all others 
as particular cases). In this case, it is assumed that 
the laser beam is focused using two crossed (at the 
angle of 90°) cylindrical lenses with different focal 
lengths. 

All the calculations were conducted assuming a 
preset field at the fundamental frequency.4,5 The 
Boyd–Kleinman method,6 so modified somewhat for 
a simpler numerical simulation, was used as a basis. 
To achieve the best agreement between the model 
representations used and the actual experimental 
conditions, the problem was solved taking into 
account the radiation refraction at the entrance and 
exit facets of the crystal. For this purpose we made 
use of the results from Ref. 7. The laser radiation 
was assumed fully spatially coherent. As applied to 
metal-vapor lasers, this means that the calculated 
results reconstruct most accurately the actual 
situation in the cases when special measures are 
undertaken in the experiment to improve the degree 
of the spatial coherence of the laser radiation. We 
mean unstable resonators with a large confocal 
parameter, systems of spatial filtering of a beam, etc.  
 

 1. Linear approximation 

Let us suppose that we deal with a laser beam, 
propagating in a vacuum (n = n0 = 1) along the axis 
Z and having a plane phase front along a rather long 
path. The latter means that the transverse radius of 
the beam a0 (the consideration is restricted to the 
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case of centrally symmetric fields) is rather large as 
compared to the wavelength. Accurate to the phase 
factor exp(ikz), the equation for such a beam in the 
most general case among all cases of interest can be 
written in the following form  

 ( ) ( )
2 2

0 0 0( ) exp[ / ]exp[ / ],x ym m

A A x a y a= − −r  (1) 

where k = 2π/λ;   mx, my = 1, 2, 3, …;  

 0 8 / ,A P cI= π   

22

0 0exp[ 2( / ) ]d exp[ 2( / ) ]d ;yx
mmI x a x y a y

+∞ +∞

−∞ −∞

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∫ ∫  

Ð is either the mean power (Ðmean) or pulse power 
(Ðp), and in the approximation of rectangular pulses 
Pp = Pmean/τF, τ is the pulse duration; F is the pulse 
repetition frequency; c is the speed of light. 

We suppose that the beam under consideration 
is focused using a system, consisting of two thin 
crossed cylindrical lenses Lx and Ly, spaced by the 
distance Lxy. The lens Lõ has the focal length fx and 
focuses the beam in the plane XZ. The lens Ló with 
the focal length fy contracts the beam in the plane 
YZ. For simplicity, the distance Lxy between the 
lenses is chosen so that the waist planes of both 
lenses coincide. 

Then we suppose that the infinite layer, between 
the planes z = zc and z = zc 

+ L, is an isotropic 
medium with the refractive index equal to n. The 
absorption is neglected, that is, we believe that n is a 
real constant. The lenses Lõ and Ló are assumed to be 
spaced by zñx and zñy from the beginning of this layer 
(this layer will be referred to as a crystal and 
thought to be isotropic). Our task is to calculate the 
field at an arbitrary distance z0 from the exit from the 
crystal. 

We restrict our consideration to the quasioptical 
approximation, that is, we assume that the following 
condition is fulfilled  

 0 0
1.x y

x y

a a

f f
α = ∼ α = <<   (2) 

According to results from Ref. 7, we obtain for the 
complex amplitude of the solution of interest  

 0 0 0 0 0 0 0( , , ) ( , ) ( , ),x yA x y z A x z A y z=  (3) 

where for 0 0 0, ( , )jj x y x x y= =   

( )
2
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0

0
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2 2

( )
2

e e e d ;

mj j
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j j
j

x xxx
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ik
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0/ ,j cjz z L n z= + +  

and the following is obviously fulfilled:  

 ;x y xyz z L− =  

T1 = 2/(n + 1), T2 = 2n/(n + 1) are the Fresnel 
coefficients for the refraction at the entrance and exit 
facets of the crystal, written in the approximation of 
the normal incidence [this takes place in view of 
Eq. (2)]. 

Let Δf determine the distance from the common 
waist plane of the lenses to the center of the crystal 
(for definiteness, we assume that Δf > 0, if the laser 
beam is focused before the center of the crystal). We 
believe that Δf is the initial, i.e., known parameter, 
that is, the waist position relative to the crystal is 
preset. In this case, to make use of Eq. (3), it is 
necessary to find the distances zcx and zcy. Using the 
results from Ref. 7, we find  

 

( )

1 1
, if 0, /2,

2

/2, if /2,

1
/2 , if /2,

pj f f f

cj pj f f

pj f f

z L L
n

z z L L

z L L
n

⎧ ⎛ ⎞
+ Δ + − Δ < Δ ≥⎜ ⎟⎪

⎝ ⎠⎪⎪
= + Δ − Δ ≥⎨
⎪
⎪ + Δ − Δ <
⎪⎩

  (4) 

where zpj is the position of the waist plane of the jth 
lens (measured from the lens) in a vacuum. 

The analytical representations of zp are known 
only for the Gaussian beams (see, for example, 
Ref. 5), that is, if mx = my = 1 in Eq. (3). On the 
other hand, if we require the fulfillment of the 
following condition 

 2

0(2 / ) 1,j jD f ka= <<  (5) 

then for practical estimates in Eq. (4) we can take 
with a good accuracy that  

 .pj jz f≈  (6) 

From here on, we will use just this 
approximation (the case of a rather sharp focusing), 
because it is just this situation, which is most 
interesting to us in solving nonlinear problems. 

It is likely possible to eliminate integrals from 
Eq. (3) only in two cases, namely when Eq. (1) 
defines the Gaussian beam5 or if the solution of the 
problem is sought in the ray optics approximation. 
Let us consider the latter possibility in a more detail. 
 It can easily be seen that, for the case when 
condition (5) holds, one can choose the distance zj, 
by increasing z0, so large that the below condition is 
certainly met  

  
2

0

21 1
.

j

j j

m

z f ka
− >>   (7) 

This means that we are interested in finding the 
solution to the problem in an region, which 
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sufficiently far from the lens waist plane, that is, 
where the ray optics approximation yields the result 
close to the exact solution of the problem. The 
validity of the above-said can be easily checked, by 
using the condition (7) for the known solution of the 
problem on propagation of the Gaussian beam.5 

The fulfillment of Eq. (7) allows the integrals 
over x and y, in Eq. (3), to be calculated 
asymptotically, using the method of stationary 
phase.8 As a result, for the most interesting case of 

/2f LΔ <  we can write (the constant phase change 

equal to π is omitted): 

  ( ) ( ) ( )0 0 0 0 0 0 0, , , , ,x yA x y z A x z A y z=  (8) 

where 
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n
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and the last equation is the direct consequence of 
Eq. (6). 

Equation (8), determining the properties of 
paraxial beams in the ray optics approximation, is 
used in what follows as one of the boundary 
conditions of the nonlinear problem. It should be 
noted that this representation of the field could be 
obtained from the solution of the corresponding wave 
equations modified for the case of the infinitely short 
wavelengths. This possibility is considered, for 
example, in Ref. 5. 

2. Approximation of a preset field for  
the second harmonic generation.  

General solution 

Within the frameworks of this study, we are 
interested in the steady-state second harmonic 
generation (SHG) mode in a homogeneous uniaxial 
crystal with a quadratic optical nonlinearity. The 
radiation of a laser beam, propagating along the Z 
axis of a Cartesian coordinate system, is believed to 
be monochromatic and spatially coherent. In 
addition, we restrict the consideration to the 
approximation of a preset field and to the scalar îîå-
interaction. The first of these two restrictions is of 
principle, as the generalization to other types of 
interaction can easily be obtained by analogy. For 
the case under study, the complex slowly varying 
amplitudes (below, we shall use the term “field” for 
brevity) at the fundamental frequency A1(x, y, z) 
and at its second harmonic A2(x, y, z) are, as known, 
the solutions of the following equations4,5: 

  
2 2

1 1 1

2 2
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1
0,

2
o

A A A
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⎛ ⎞∂ ∂ ∂
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where  

 1 2( ), 2 (2 , ), / ;e e

o o
k kn k kn k ñ= ω = ω θ = ω  

θ is the angle between the optical axis of the crystal, 
lying in the plane XZ, and the axis Z of the 

coordinate system; 2 12
e

ok k kΔ = −  is the wave detuning; 

ρ is the birefringence angle; σ  is the coefficient of 
nonlinear coupling. 

Equations (9) are written accurate to terms of 
the order of μ2, where the value of the small 
parameter μ << 1 is determined by the divergence (2) 
of the fundamental radiation. The anisotropy angle is 

also assumed small ( )ρ ∼μ . If one restricts the 

consideration to situations, in which  

 ,

k

k

Δ
∼ μ  (10) 

then in Eq. (9) outside the exponent we can use  

  ( ) (2 , )e

o
n n nω ≈ ω θ ≡ . (11) 

Or for wave numbers  

 1 22 2 .
e

o
k k k≈ ≡   (12) 

Let the plane z = 0 be the entrance facet of the 
nonlinear crystal and in this plane  

 2( , ,0) 0A x y = . (13) 

In this case, the solution of Eq. (9.2), satisfying the 
boundary condition (13), is the function  
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( )
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⎡ ⎡ ⎤− + ρ − ρ⎢× ×⎢ ⎥
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∫

∫ ∫

 (14)

 

where z is an arbitrary distance passed by the laser 
beam inside the crystal. 

The validity of the above-said can be easily 
checked by the direct substitution of Eq. (14) into 
Eq. (9.2). In writing Eq. (14), we supposed that the 
transverse dimensions of the laser beam inside the 
nonlinear crystal are much smaller than the cross size 
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of the crystal itself, which has allowed the infinite 
limits to be used for the integrals over x and y. 

Denote the length of the nonlinear crystal as L. 
Then for all z ≤ L Eq. (14) determines the part of the 
SH field, which was formed at the distance z. This 
component can be considered now as an independent 
extraordinary wave, propagating linearly along the Z 
axis absolutely independent of the processes, which 
will occur at a distance between z and the chosen 
observation plane (inside or behind crystal). Let the 
space z > L be vacuum (n = n0 = 1), and we are 
interested in the form of the field (14) in the plane 
L0 

= L + z0, that is, at the distance z0 from the crystal 
exit. The result of such a “linear” propagation of the 
SH wave from an arbitrary plane z to L0 will be 
denoted as a function A2(x, y, z; L0). After quite 
standard calculations, which are omitted here, we 
find that  
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( )

2 0, 0 0 2

0

2

02
1

2

0

( , , ) e

, , exp

d d d ,

k

z

i t

L

L

L

ik
A x y z L iT

t

x x L t
A x y t ik

t

y y
ik x y t

t

− Δ

+∞

−∞

⎡ ⎤
= σ − ×⎢ ⎥π⎣ ⎦

⎡ ⎡ ⎤− + ρ − ρ
⎢× ⎢ ⎥ ×
⎢ ⎢ ⎥⎣ ⎦⎣

⎤⎡ ⎤− ⎥× ⎢ ⎥ ⎥⎢ ⎥⎣ ⎦ ⎥⎦

∫

∫ ∫  

 
(15)

 

where ( )0 / .Lt z L t n= + −  It is taken into account 

here that the field (15) passes the path L – z in the 
anisotropic medium. The losses for the reflection 
from the exit facet of the crystal are taken into 
account as well.  

Equation (15) is, generally speaking, the sought 
solution of the SHG problem in the approximation of 
a preset field, but it has one significant disadvantage. 
This solution appears to be very complicated and, in 
the general case, assumes the calculation of fivefold 
integrals. An exception, apparently the only one, is 
the SHG problem in the case of Gaussian beams. In 
this case the form of the function A1(x, y, t) is 
known and the integrals from Eq. (15) over the 
transversal coordinates can be calculated exactly. 
This result is known as Boyd–Kleinman formula. 
Since this particular case does not comprehend all 
other situations, it seems worth demonstrating the 
method, which yields the result analogous to 
Eq. (15), but in a markedly simpler form. The 
reasoning is as follows. 

To speak generally, the boundary condition for 
the field at the fundamental frequency [that is, for 
Eq. (9.1)] can be set wherever possible, because in 
this case we deal with the purely linear problem. 
Therefore, we assume that the function A1 is known 
at the plane L0 [for which the solution (15) is 
written]: 

  ( ) ( )1 0 1 0, , , , .A x y z L A x y L= ≡  (16) 

Then, obviously, inside the crystal we have that  

( ) ( )
22
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= ξ η ξ η
π ∫∫  (17) 

where Lt  is determined in Eq. (15). 

After two times substitution of Eq. (17) into 
Eq. (15) and making rather simple calculations, we 
obtain the following result: 
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(18)

 

where ( )t L tγ = ρ − . 

Equation (18) is just the sought general solution 
of the nonlinear problem. This result is fully 
equivalent to that presented by Eq. (15), but much 
simpler, because now it is necessary to know the form 
of the field at the fundamental frequency in only one 
plane, namely, at L0. 

The solution (18) can be reduced to even 
simpler form, if we assume that the observation plane 
is infinitely far (or, at least, very far as compared to 
the crystal length) from the waist plane. In this case, 
[see the comments to Eq. (7)] for the boundary 
condition (16) we can use Eq. (8). Moreover, it 
seems to be quite justified to seek the solution of the 
SH field in a similar form as well, that is, to suppose 
that  

 
( )

2 2

2
2

2 0 2 0( , , ; ) ( , , ; ) e ,

x L y
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=  (19)  

where the radius of curvature of the wave front is 
determined by Eq. (8). 

Taking the above-said into account, we 
substitute Eqs. (8) and (19) into Eq. (18), set z0 
tending to infinity, and after elementary 
transformations obtain  
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where  
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Now in Eq. (20) we calculate the integral over t 
and, as a result, obtain the simplest representation of 
the SH field 
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where  
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Similar result, but for more general case, is 
presented in Ref. 9. 

Consider now a particular case, in which the 
result can be written without quadratures. Assume 
that the laser beam waist lies outside the crystal (for 
definiteness, we believe that Δf > 0). For this case, 
we again obtain the solution (20), in which now Vt 
(with the allowance made for Eq. (4)) is as follows: 
 

  ( ) 2

0/2 / / .t fV L t n z= Δ − +  (22) 

Assume then that the following condition is 
fulfilled (the distance Δf is large enough) 
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where , ;j jx x y= α  are determined by Eq. (2). 

This means that now the integrals, in Eq. (20), 
over the transverse coordinates can be estimated 
asymptotically. Thus, we obtain  
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If, in addition to Eq. (23), the following 
condition is fulfilled 

 ,f LΔ >>  (25) 

then in Eq. (24) we have approximately that 

 2

0/ .t fV z≈ Δ   (26) 

Taking Eq. (26) into account, we obtain, instead of 
Eq. (24), that 
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The physical meaning of the conditions used is 
quite clear. It is easy to see that Eq. (24) is the 
solution of the SHG problem for the divergent beam 
in the ray optics approximation. Consequently, 
condition (23) shows how far from the waist the 
nonlinear crystal should be for the effect of 
diffraction to be neglected. In addition, the 
fulfillment of Eq. (25) allows us to neglect the 
amplitude variation within the nonlinear crystal due 
to the geometric divergence of the beam at the 
fundamental frequency. 

Conclusions 

Let us formulate some general remarks, which 
are not directly connected with the issue considered, 
but have, in our opinion, a certain methodological 
significance. 

Return to the solution (14) and note, first of 
all, that the structure of this equation determining 
the SH wave will not change, obviously, if we refuse 
from using the approximation of a preset field, that 
is, we consider the complete system of nonlinear 
equations instead of Eq. (9) (see, for example, 
Ref. 4). Of course, in this case Eq. (14) is not 
already a solution, but an integral equation 
(A1(x, y, t) now depends on A2(x, y, t)) for 
determination of the SH amplitude. For further 
reasoning, the approximation of quasioptics, which 
we used in deriving Eq. (14) for the transformation 
of the Green’s function, appears to be of no principle 
here too. Different representations of the Green’s 
function are considered in Ref. 10, and here we shall 
not touch these aspects. In other words, we can 
conclude that Eq. (14) defines the exact structure of 
the representation of the SH field amplitude. Below 
we demonstrate that this exact representation allows 
a very simple physical interpretation. 

As known,4 the complex amplitude of the SH 
plane wave satisfies the equation  

 22

1

d ( )
e ( ),

d
ki tA t

i A t
t

− Δ
= σ   (28) 

which, in particular, follows from Eq. (9.2), if we 
neglect in it the diffraction (the amplitude of the 
plane wave is independent of the transverse 
coordinates x, y) and ignore (for the same reason) 
the energy walk off due to birefringence. On the 
other hand, Eq. (28) can be used approximately for 
spatially limited beams in an anisotropic medium 
assuming that the distance Δt, at which the nonlinear 
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interaction occurs, is small. In this case, neither 
diffraction nor anisotropy can markedly change the 
shape of the beam. The above-said becomes 
mathematically rigorous, if we state that Δt tends to 
zero.  

Thus, the elementary increment of the SH 
amplitude due to the nonlinear interaction at an 
infinitely small distance dt in any crystal for any 
beam (with arbitrarily small, but finite dimensions in 
the cross section) can be written absolutely 
rigorously, using Eq. (28), in the following form: 

 2

2 1d ( ) e ( , , )d .ki tA x,y,t i A x y t t− Δ
= σ   (29) 

Consider now Eq. (29) as a boundary condition 
for the SH wave, determined in the plane z = t, and 
find the solution of the linear problem on 
propagation of this wave to an arbitrary plane z t≥ . 
Using the results obtained in Ref. 10, we have that, 
for example, in the quasioptical approximation  

2 2
0 0

2 2
0 0

2 0, 0

( ) ( )

( ) ( )
2

( ) ( )

2 ( ) ( )
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e d
( )

( , , ) e e d d .
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x x z t y y
ikn ikn

z t z t

i t

x x z t y y
ikn ikn

z t z t

ikn
A x y t z

z t

A x y t x y

ikn
i t

z t

A x y t x y

+∞ − +ρ −ρ −

− −

−∞

− Δ

+∞ − +ρ −ρ −

− −

−∞

⎡ ⎤
= − ×⎢ ⎥π −⎣ ⎦

⎡ ⎤
⎢ ⎥× =
⎢ ⎥
⎣ ⎦

⎡ ⎤
= σ − ×⎢ ⎥π −⎣ ⎦

⎡ ⎤
⎢ ⎥×
⎢ ⎥
⎣ ⎦

∫ ∫

∫ ∫

  

(30)

 

Now we can find the resultant SH field in this plane, 
which is obviously a sum of all elementary 
contributions of the form (30), formed at the distance 
from t = 0 to t = z. For this purpose, integrating 
Eq. (30) over t within these limits, we obtain the 
exact equation (14).  

The fact that our, speculative to a sufficient 
degree, reasoning has led to the result (14), following 
from the rigorous solution of the system of nonlinear 
wave equations, allows us to imagine the following 
physical pattern of the SHG process. Under the 
effect of laser radiation, a wave of the nonlinear 
(quadratic in our case) polarization is induced in the 
crystal. As this takes place, any medium layer dz 
appears to be a source of an elementary SH wave, 
whose amplitude is determined by Eq. (29). Once 
induced, these elementary waves then propagate 
along the positive direction of the Z axis interacting 
neither with the field at the fundamental frequency 
nor with each other. The interaction in this case is 
understood as any change of the shape or the 
amplitude of the elementary SH wave not connected 
with the linear mechanisms – diffraction blooming, 
energy walk off due to birefringence, absorption, etc. 
In the arbitrarily chosen observation plane constz =  

(inside or behind the crystal), all the elementary 
contributions are summed up (interfere with each 
other), what leads to the formation of the resultant 
field A2(x, y, z).  

The authors of Ref. 6 reasoned roughly in this 
way and in this connection the following should be 
noted. It is clear that the approach to the solution of 
the SHG problem, which is based on the 
scheme (28)–(30) should cause, from the very 
beginning, quite justified doubts, if it is not 
confirmed, as in our case, by the rigorous theoretical 
results. In addition, in Ref. 6 the process of the SH 
wave propagation was considered not rigorously, but 
with some quite intuitive suppositions. Finally, in 
that paper it was assumed that the crystal is 
surrounded not the by air, but by some fictitious 
isotropic medium with the refractive index n, 
satisfying the condition (11), which allowed the 
refraction effects to be excluded from the 
consideration. Based on this, the authors of Ref. 6 
have called their method “heuristic,” which certainly 
subtracts nothing from their merits. 

However, in our opinion, it is incorrect to call 
this approach “quasigeometric,” as it was called in 
Ref. 4, only because it is based on Eq. (29). The 
validity of using Eq. (29) was already discussed 
above. Correspondingly, the statement that the 
quasigeometric Boyd–Kleinman method will coincide 
with the exact solution only at a long distance from a 
crystal4 is not fully correct. This is not the case, 
because, as was shown, the result obtained by 
integration of Eq. (30) always coincides with the 
exact solution (14). It is quite different thing that in 
Ref. 6 the observation plane actually was remote, but 
only in order to reduce the integral over the 
longitudinal coordinate to a simpler form. Certainly, 
in view of this fact, the result cannot be used to 
describe SH at small distances from the exit facet of 
a crystal. 

Similar possibility of simplifying the result is 
used in this paper as well. It is exactly because of the 
use of a remote observation plane, that we managed 
to obtain simpler equations (20)–(21) instead of 
Eq. (18) and used the representation (8) to set the 
boundary condition. In general, if we compare the 
solution (14), whose particular case (Gaussian beam) 
is the Boyd–Kleinman formula, with Eq. (18), the 
main result of this paper, then we can see that they 
are, in fact, different representations of the same 
rigorous solution of the problem. The only difference 
is that Eq. (18) is somewhat simpler and rather 
accurately takes into account the influence of the 
effects associated with the refraction of both beams 
at the entrance and exit facets of the crystal on the 
SHG. It is clear that the correctness of the above-
said [that is, equivalence of the solutions (14) and 
(18)] should be confirmed by specific calculations 
within the framework of a case study by properly 
choosing test problems. However, these aspects call 
for separate investigation and are not discussed here. 
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