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I consider orientation of water ice cloud particles under simultaneous actions of the 
aerodynamic force due to gravity and vertical gradient of the electric field. These processes compete. 
The former one orients particles by their large diameters horizontally while the latter one does the 
same along vertical. It is shown that a field with the strength about 104 V/m is capable of 
compensating for the action of the aerodynamic forces in case of particles with sizes of a few microns. 
To orient submicron particles, the electric field strength of 105 V/m is required, because at lower 
values the energy of electric interaction turns out to be less than kT. Besides, the field of such 
strength is capable to overcome the action of the aerodynamic forces and orient micron particles by 
their large diameters vertically. To orient all particles with sizes between 0.1 and 1000 µm following 
the electric pattern, the electric field has to have the strength about 2 · 106 V/m. 

 

Introduction 

Spatial orientation of non-spherical particles of 
water ice clouds shows noticeable effect on the values 
of the transmission directed scattering coefficients. 
This must be taken into account in calculating the 
solar radiative fluxes. 

Orientation depends on the combined effect of 
several physical factors. Among them there are the 
following: aerodynamic force moments appearing at 
particles falling down and at wind velocity 
pulsations. Orientation under the action of electric 
field is also referred to these factors. The factors 
destroying orientation are interaction of particles 
with small-scale turbulent motions of air and 
Brownian motion. The last factor is only essential for 
particles of submicron and micron size. 

Orientation under the effect of aerodynamic 
factors was considered earlier in previous papers1,2 as 
the moments of aerodynamic forces for particle size of 
submicron and micron range are comparable with the 
random moments of Brownian motion, such particles 
were considered as not oriented. Actually, particles 
with the size greater than 20 μm are subject to 
aerodynamic orientation. Brownian motion is 
inessential for such particles, and the main 
destructive factor is their interaction with turbulent 
cells of the energy dissipation interval. Possible 
effect of electric field on orientation of water ice 
cloud particles was not taken into account.1,2 Joint 
effect of the aerodynamic force moment appearing as 
the particle falls down and the electric force moment 
appearing in the presence of vertical gradient of the 
electric field is considered in this paper. 

Potential energy of non-spherical 
water ice particles in the electric field 

Orientation of particles in the electric field can 
appear due to anisotropy of dielectric properties of 

the particulate matter and due to the difference in 
polarization of non-spherical particles with isotropic 
dielectric constant along different directions. Let us 
assume that the second case corresponds to water ice 
cloud particles, and let us ignore the insignificant 
birefringence of hexagonal water ice crystals. It is 
assumed that electric conductivity is equal to zero. 
Then the relative dielectric susceptibility 

 1,χ = ε −  

where ε is the dielectric constant. For pure water ice 
in a static field χ = 72.3 

Then let us approximate hexagonal ice columns 
and plates by elongated and oblate ellipsoids of 
revolution. Let us introduce a mobile coordinate 
system, which is denoted by the set of three mutually 
orthogonal unit vectors n1 × n2 = n3, directed along 
the axes of the ellipsoid of revolution. The direction 
n3 is considered as the axis of rotation. In an  
immobile coordinate system åx × ey = ez the vector of 
the static field strength E is directed along z-axis. 
Transformation of the vector components from the 
immobile coordinate system to the mobile one is 
made by the matrix operator Ì(ϕ, θ, γ), where ϕ, θ, 
and γ are the Euler angles. 

The potential energy of a particle is equal to the 
scalar product of the vector of induced dipole 
moment to the vector of the field strength taken with 
the opposite sign 

 =— .U pE  (1) 

The components of the dipole moment of the 
homogeneous isotropic ellipsoid in the mobile 
coordinate system are determined by the formula4: 

 0 ,
1

n n

n

V
p E

ε χ
=

+ κ χ
 n = 1, 2, 3,  (2) 

where ε0 = (4π ⋅ 9 ⋅ 109)–1 C/(V ⋅ m) is the electric 
constant,5 V = 4πa1à2à3/3 is the volume of the 
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ellipsoid; κn is the shape factor. The components of 
the static field strength in Eq. (2) should be 
presented in the mobile coordinate system. For this 
purpose, the transformation n i=E ME  (i = x, y, z) 

is applied. To present the dipole moment vector in 
the immobile coordinate system, one has to perform 
the inverse transformation p = M–1p(n). The matrix M 
is orthogonal so that M–1 = MÒ. The following 
expression for the dipole moment should be 
substituted to Eq. (1): 

 0

— ˆ ,Vε χ
1p= M ME   (3) 

where χ̂  is the diagonal matrix with the components 

( )/ 1 .
n

χ + κ χ  The shape factors κn determining the 

view of the particle polarization tensor are calculated 
using the half-lengths of the ellipsoid axes4: 
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Let us denote the half-axes of the ellipsoid of 
revolution à1 = à2 = à⊥, à3 = à||, i.e. perpendicularly 
and parallel to the axis of rotation. Hence, 
κ1 = κ2 = κ⊥, κ3 = κ||. Dependence of the shape 
factors on the relationship between the half-axes β 
calculated by Eq. (4) is shown in Fig. 1. 

 
κ, rel. units 

  κ||   κ⊥ 

  κ||  κ⊥ 

 
1             5                10              15 β 

Fig. 1. Shape factor, κ: solid lines for elongated ellipsoids; 
dotted lines for spheroids. 

Substitution of Eq. (3) into the expression (1) 
after corresponding matrix transformations gives the 
following formula for the potential energy: 

 ( ) ( )⊥θ = − ε α θ + α θ�
2 2 2

0e

1
sin cos ,

2
U VE   (5) 

where 

 ( ) ( )/ 1 , / 1 .⊥ ⊥α = χ + κ χ α = χ + κ χ� �   

Ignoring the effect of all other forces except for 
the electric one, the particle will take such a 
position, at which the potential energy takes its 
minimum, and the affecting force moment M

e
 reduces 

to zero. The second derivative here should be 
positive: 
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If α|| > α⊥ (the case of elongated ellipsoids), the 
conditions (6) are fulfilled at θ = 0. The rotation axis 
is parallel to the field vector E. If α|| < α⊥, the 
rotation axis becomes perpendicular to the vector E. 
In any case, the big diameter of the particle takes its 
position parallel to the field strength vector. If the 
direction E coincided with vertical, this tendency is 
opposite to the action of aerodynamic forces, acting 
on the falling particles and making their big 
diameters to take a horizontal position. 

Equations of particle motion 

Equation of rotation of a solid body in 
generalized coordinates has the following form 

 
( ) ( )

( )
∂ ∂

− = −ξ +
∂ ∂

� �

�

�

, ,d
,

d

i i i i

i

i i

L q q L q q
q N t

t q q
  (7) 

where L is the Lagrange function, and the Euler 
angles and their derivatives with respect to time are 
the generalized coordinates and velocities. If the 
right-hand parts of these equations equal zero, the 
equations describe the motion in the field of 
conservative forces. In this case the viscous friction 
forces and the random moment of forces appearing 
due to fluctuation of the number of collisions with 
air molecules are in the right-hand part. The moment 
of force has the following properties 

 ( ) ( ) ( ) ( ) ( )0 , ,N t N t N t F N t t′ ′= = δ −   (8) 

where N is the random value with dimension of the 
moment of force. 

The Lagrange function for a symmetric rotor has 
the following form: 

 ( ) ( )
22 2 2

sin cos +
2 2

II
L

⊥= ϕ θ + θ + ϕ θ γ −
�

�

� � �  

 ( ) ( )− θ − θ
e a

,U U  (9) 

where I|| is the inertia moment at rotation around the 
rotation axis of the ellipsoid – the axis n3 of the 
mobile coordinate system. The moment of inertia at 
rotation about any direction perpendicular to the 
aforementioned one, is denoted as I⊥. The moment of 
electric forces is defined by Eq. (6). The derivative 
∂Ua/∂θ of the potential energy of interaction with 
airflow incident on the falling particle determine the 
acting moment of aerodynamic forces1: 

 ( )θ = ∂ ∂θ = λ ρ θ2

a a sin2 /2,M U u V  (10) 

where u is the velocity of particle falling down; ρ is 
the density of air; λ is the aerodynamic shape-factor 
expressed through the ellipsoid eccentricity.1 If the 
ratio of the big half-axis to small has been changed 
from 1.5 to 5, λ changes from 0.53 to 0.6 for 
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spheroids and from 0.36 to 0.12 for elongated 
ellipsoids of revolution. 

Substitution of formula (9) into Eq. (7) taking 
into account Eqs. (6) and (10) gives the system of 
three equations of motion. The equations are quite 
difficult for analysis, because they involve the terms 
containing the products of generalized angular 
velocities. Moreover, the components of the random 
moment of force are in the right-hand parts. At the 
same time, it is clear that rotations by the angles ϕ 
and γ are caused only by Brownian motion, because 
the moments Ma and Må depend only on the angle θ. 
Let us consider the Brownian motion in the mobile 
coordinate system, where the equations of motion 
have the following form: 
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and I1 = I2 = I⊥, I3 = I||. The angular velocities 
directed along the respective axes of the mobile 
coordinate system are denoted as ωi. The system of 
equations (11) with zero right parts describes 
precession of the symmetric top, rotating with 
constant velocity around the direction n3, on which 
outside forces do not affect. 

Formal solution of the third of Eqs. (11) has the 
following form7: 

 −ξ −ξ ξ
ω = + ∫3 3 3/ / /
3 3( ) e e ( )e d .t I t I t I
t C N t t   (12) 

According to Eq. (8), the function N(t) is the 
sequence of noncorrelated pulses with alternating 
signs, zero mean value, and random time of arrival, 
amplitudes and durations. So, one can say only about 
some statistical characteristics averaged over time. It 

is clear that 3 0,ω =  because the function with 

alternating sign and zero mean value is under the 
integral, and the transitional term, which is the 
solution of homogeneous equations, also becomes 
equal to zero after averaging. The autocorrelation 
function has the form 

 ( ) ( ) ( )3 3 3 3( ) exp / .f t t F Iτ = ω ω − τ = −ξτ  (13) 

The second property of Eq. (8) and the theorem 
of ergodicity are used for its determination. To 
determine F, one can use the fact that the correlation 
function at τ = 0 takes the value of the variance of 

the random value 2

3ω  and the known principle of 

the kinetic theory, that the kinetic energy 2 /2,I ω  

related to one degree of freedom is equal to kT/2. 
Taking into account this fact, we finally obtain 

 3 3( ) exp( / )/ .f kT I Iτ = −ξτ   (14) 

One can call the value I/ξ the time of 
“forgetting” the current state. 

Summing the first and second equations of the 
system (11), one can obtain similar result for rotation 
in the plane containing the rotation axis of the 
ellipsoid. The formula will be different by the factor 
2 in front of kT, because two degrees of freedom take 
part in the motion, and one should substitute 
I1 = I2 = I⊥ instead of I3. 

The moments of inertia at rotation around the 
direction perpendicular to the ellipsoid axis are equal 

to 2 2

1 2 ( )/5,I I M a a⊥= = + �  and at rotation around 

the axis 2

3 2 /5,I Ma⊥= where 24 /3M a a⊥= π ρ�  is the 

particle mass. The viscous friction coefficient ξ 
[kg ⋅ m2 ⋅ s–1] is expressed through the dynamic 
viscosity η by the following equations8: for a sphere 
ξ = 8πηR3; for strongly oblate spheroid rotating 
around the big axis 32ηR3/3; for elongated ellipsoid 
with small half-axis à⊥ and the half-axes ratio 
a||/a⊥ = β rotating around the small axis ξ 
= 16πΛηa⊥

3/3, where 

1
4 2 2 0.5 2( 1) (2 1)( 1) ln( + 1) .

−

−⎡ ⎤Λ = β − β − β − β β − −β⎢ ⎥⎣ ⎦
 (15) 

The value Bω = 1/ξ is called “rotation 
mobility.”8 The mean angle <θ> by which the 
particle turns during the characteristic time I/ξ is 

equal to 2 /kTI⊥ ξ  (see Table). 

 

Mean turn angle <θ> of an ellipsoid particle with the big 
half-axis length l during the correlation time τ = I/ξ 

l, μm 0.1 1 5 10 50 100 

<θ>î 1.6 0.5 0.22 0.16 0.07 0.05 

 
It is seen from the data presented that the 

essential turns are possible for particles of submicron 
size. The Brownian motion of larger particles of 
crystal clouds is nothing but disorderly turns within 
the tenths of a degree. One can show that the time, 
during which orientation of a particle, for example, 
of a spheroid with the ratio of the big half-axis to 
small one equal to β, occurs  is determined by the 
formula 

 
1

2 2

0 08 (1 )(1 ) .E
−

⊥ ⊥
⎡ ⎤τ = η + κ χ + κ χ ε πβ κ − κ χ⎣ ⎦� �  

At Å = 104 V/m it is equal to 2.88 ⋅ 10–2 s for 
particles of all sizes. During this time, due to 
rotational diffusion, the particle can deviate by the 

angle 02 .kTBωθ τ�  Estimates show that only 

particles of submicron size can deviate by the angle 
greater than 1 rad. Particle of the size of 10 μm can 
deviate by approximately 2°. If Å = 106 V/m, then 
τ0 = 2.88 ⋅ 10–6, and even submicron particles have 
no time to perform essential angular drift. Let us 
assume that, at least for particles of the size greater 
that several micrometers, Brownian motion is a small 
disturbance superposed on the motion under the 
effect of conservative forces and friction force. Then 
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the equation of motion can be written in the 
following from: 

 
2
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The substitution 2θ = Θ transforms Eq. (16) to 
the equation of motion of a pendulum with damping. 
It is known that in the case of small oscillations 
Eq. (16) admits three kinds of motion depending on 

the sign of ( )2( ) .s I m I⊥ ⊥= ξ −  Non-periodic motion 

toward the equilibrium state occurs at s > 0 and 
s = 0, and at s < 0 – damped oscillations about this 
position. Dynamics of the process is essential in 
studying the electrooptical phenomena. In our case, it 
is out of our interest, the same as non-linearity of 
Eq. (16), which under particular conditions admits 
rotation of a particle with subsequent transition to 
the regime of damped oscillations. In any case, the 
particle finally will take the position, at which the 
acting force moment is equal to zero. This fact is 
interesting from the viewpoint of the effect of 
electric field on orientation. So, it is sufficient to 
consider the behavior of the sum of the moments of 
aerodynamic and electric interactions. 

Relationship between aerodynamic  
and electric forces 

Let us first make a remark concerning the 
ability of the electric field to orient water ice 
particles of different size, assuming that no other 
forces affect them, except for the Brownian motion. 
Let us take the beginning of exceeding of the level 
kT by potential energy of electric interaction (5) as a 
criterion of the beginning of orientation. Then it 
occurs that the field strength of the order of 105 V/m 
is required for orientation of particles of 0.5-μm size; 
the field of Å = 104 V/m is capable of orienting 
particles of the size greater than 2 μm, and so on: 
Å = 103 V/m, l > 10 μm; Å = 102 V/m, l > 35 μm; 
Å = 10 V/m, l > 200 μm. It is clear that such a 
behavior is caused by the dependence of electric force 
moment on the particle volume. 

The above said means that the weighted 
particles of the size of several tens of micrometers 
and more could be oriented in electric field of order 
102 V/m that is comparable with the field near the 
Earth’s surface. The particles of submicron and 
micron range can be considered as practically 
suspended, but the particles of the size more than 
10 μm have noticeable sedimentation velocity. 
Aerodynamic forces act on them, which, as was 
mentioned above, are directed opposite to the action 
of the electric forces. 

Let us note that in the definition of the 
moment (10) accepted in Ref. 1, the angle θ was read 
from the vertical direction to the small axis of the 
ellipsoid, and in this paper it is read from the 
vertical direction to the rotation axis. In the 
coordinate system accepted here θ for spheroids has 
the same meaning as in Ref. 1 and in the case of 
elongated ellipsoids one should substitute the term  
(θ + π/2) in Eq. (10) instead of the angle θ, that 
means the change of sign in the right-hand part of 
Eq. (10). 

Taking into account the above said concerning 
the total moments, the following should be fulfilled 
in the equilibrium position: 

for spheroids 

   ( )⊥
⎡ ⎤θ = λ ρ − ε α − α θ =⎣ ⎦�

2 2

0sph
1

( ) sin2 0,
2

M V u E  (18) 

for ellipsoids 

  ( )⊥
⎡ ⎤θ = −λ ρ − ε α − α θ =⎣ ⎦�

2 2

0el

1
( ) sin2 0,

2
M V u E  (19) 

the condition of minimum being 

 2 2/ / 0.U M∂ ∂ θ = ∂ ∂θ >   (20) 

Let us note that the values V, u, λ, and α 
should be marked, respectively, by the scripts “sph” 
and “el”, because they are determined by different 
formulas for spheroids and ellipsoids. 

For spheroids α⊥ > α|| and it follows from 
Eqs. (18) and (20) that the particle axis takes the 

position θ = 0 if ( )2 2

0 ,u E⊥λ ρ > ε α − α�  but θ = π/2 

if ( )2 2

0 .u E⊥λ ρ < ε α − α�  Besides, the moments 

become equal to zero at equality of expressions in 
brackets to zero. This means mutual compensation for 
aerodynamic and electric forces, i.e., the absence of 
orientation. Then it is interesting to consider the 
ratio between these forces for particles of different 
size. 

Let us note that the particle volume is equally 
included into formulas for the moments of 
aerodynamic and electric forces. Hence, the ratio we 
are interested in depends only on the terms in 
brackets of Eqs. (18) and (19). The shape factor λ 
depends on the type of particle and on the ratio of 
the big axis to small. The values α⊥ and α|| depend on 
the same ratio (see Eqs. (4) and (5) and Fig. 1). But 
the velocity of particle fall down depends on its size 
and is determined by the known empirical relation,9 
which, being written in main units of SI system, has 
the following form: 

 3 2
10 ,

b b
u Al

−

=  m/s,  (21) 

where l is the big diameter of particle, m. The values 
of the empirical constants A and b for particles with 
different ratios between big and small diameters are 
presented in Ref. 9. For illustration, let us consider 
particles with the diameter ratio 2.5/1 and define: 
for spheroids À = 50, b = 0.75; for elongated 
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ellipsoids À = 70, b = 0.92. According to the results 
shown in Fig. 1, we have: for ellipsoids κ|| = 0.134, 
κ⊥ = 0.432; for spheroids κ|| = 0.590, κ⊥ = 0.200. The 
values of the shape factor λ are the following: for 
spheroids 0.57; for ellipsoids 0.23. 
 

 log(Ma /V),  log(Me /V) 

 

 
0.1          1.0             10            102         103 

            Big diameter of particle, μm 

Fig. 2. Moments of aerodynamic force related to the 
particle volume: spheroids (solid line), elongated ellipsoids 
(dotted line); moments of electric force (horizontal dotted 
lines from bottom to top) calculated for spheroids and 
related to the particle volume at the strength of the electric 
field Ei = 104, 2 ⋅ 104, 1 ⋅ 105, 5 ⋅ 105 V/m. The values of 
the moments of the forces for elongated ellipsoids are close 
to that calculated for spheroids. 
 

The comparison of the moments of aerodynamic 
and electric forces related to the particle volume is 
shown in Fig. 2. The points of crossing the lines 
log(Ma(l)/V), log(Må(Åi)/V) with horizontal lines 
determine the big diameter of particle, at which 
mutual compensation for the moments of force 
occurs, if Å = Åi. Particles smaller than this size 
undergo mainly the action of electric forces. 
Aerodynamic orientation is prevalent for larger 
particles. 

Conclusion 

Electric fields with the strength of 104 V/m and 
more are required for noticeable manifestation of 
electric orientation in water ice clouds occurring 
under conditions of its competition with orientation 
by aerodynamic force. If one assumes existence of 
such fields, joint effect of electric and aerodynamic 
forces will manifest itself as follows: as the strengths 
of the electric field increases, first small and then 
larger and larger particles will be oriented by big 
diameters along the direction of the electric field. 
Then the size range should follow, where mutual 
compensation occurs, and orientation of particles is 
not observed. Then the range of large particle 
follows, for which aerodynamic orientation is 
prevalent. If one sets the upper threshold of size by 
the value of 103 μm, the field with the strength of 

the order 2 ⋅ 106 V/m, i.e., close to electric 
breakdown in air will be required for complete 
prevalence of the electric type of orientation. 

Possibility of strong electrostatic charging of 
water ice particles falling down does not raise 
doubts, the phenomenon of winter thunderstorms is 
known. But, they were observed in strong snowfalls 
and snowstorms. Author has no data, which confirm 
or disprove existence of the fields of the strength of 
104–106 V/m in crystal clouds of the upper level. 

The estimates obtained from the value of the 
current density and conductivity of air in 
nimbostratus clouds10 show that the field strength 
can reach the values of the order of 104 V/m, but the 
concentration of particles in these clouds is much 
greater than in cirrus clouds. On the other hand, 
such kinds of halo as sun pillars and false Sun, as 
well as anomalous backscattering observed at laser 
sounding of crystal clouds are explained by 
horizontal position of big sides of crystals, which 
favors toward aerodynamic orientation of particles. 
 The conclusion follows from the above said, 
that, with rare exceptions, electric field does not 
essentially affect the orientation of particles of 
crystal clouds. One can draw more particular 
conclusions, as the data on electric fields in crystal 
clouds will be accumulated. If the values of the 
strength of the electric field have been known, all 
stated in this paper, together with materials of 
Ref. 1, make it possible to determine the distribution 
of particles over the orientation angle at joint effect 
of aerodynamic and electric orientation. 
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