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New effective method called the shadow function method has been worked out for the problems 

of light scattering by large, as compared to the wavelength, nonspherical particles. As against the 
standard Fraunhofer diffraction patterns, the shadow functions have a number of important 
advantages, which make their computation easier. Numerical values of shadow functions for 
hexagonal crystals of cirrus clouds are presented. These data are of interest for both aureole 
measurements in clouds and lidar sensing of cirrus clouds. 

 

Introduction 

The small-angle scattering method, which in 
atmospheric optics is called the aureole scattering, is 
one of the most promising in optics of light-scattering 
media. The experimentally measured scattering phase 
function theoretically can be a source of information 
on shape and size distribution of particles. However 
today, when interpreting experimental data, the 
authors would have to assume a spherical shape of 
particles,1–4 because the theory of small-angle 
scattering by nonspherical particles is insufficiently 
advanced. The purposes of this paper are the further 
development of the theory and its application to the 
cirrus-cloud optics.  

The small-angle scattering is understood as 
formation of a specific component in a scattered field 
only for relatively large, as compared to wavelengths, 
particles (i.e., λ <<  d, where λ is the wavelength and 
d is the characteristic particle size) regardless of the 
refractive index. This component is formed due to the 
Fraunhofer diffraction of an incident wave by a 
particle shade line and, hence, it is essential in a 
narrow cone of scattering directions of θ ≈ λ/d 
relative to the direction of the incident wave 
propagation. 

In general, in the problem of light scattering by 
large (λ << d) particles of random shapes, the 
scattered field consists of two components, which are 
suitable to be called refracted and shadow-forming 
fields.5 The refracted field just near the particle 
surface is described by the geometrical optics 
approximation as the ensemble of beams reflected or 
refracted inside the particle. The shadow-forming 
field near the particle is a plane-parallel beam, 
propagating in the direction of the incident plane 
wave, which in its cross section corresponds to the 
particle projection and has an amplitude equal to the 
amplitude of the negatively signed incident field. A 
superposition of the refracted and shadow-forming 
fields results in their elimination, i.e., in a shadow. 
When propagating further from the particle, both 
fields are transformed in accordance with the wave 

equations. In particular, the shadow-forming field in 
the wave zone (i.e., at the distances R >> d2/λ) is 
described by the above mentioned plane wave 
Fraunhofer diffraction by the particle shade line. 

As a rule, the shadow-forming field inside the 
Fraunhofer diffraction cone (θ ≈ λ/d) significantly 
exceeds the refracted one in amplitude; hence, the 
latter can be easily neglected, but it can essentially 
contribute into the cone θ ≈ λ/d for crystals with 
parallel edges. Actually, the crystal parallel edges at 
some orientations of the particle are equivalent to a 
plane-parallel plate. Such edges form plane-parallel 
light beams coming out from the crystal in the 
direction of the incident wave propagation as well. 
Such beams will be called transmitted as opposite to 
the above-described shadow-forming beams. Thus, 
small-angle scattering for crystals with parallel edges 
will be determined by the Fraunhofer diffraction of 
both the shadow-forming and transmitted beams. 

The state-of-the-art of the computer techniques 
allows one to easily calculate the diffraction pattern 
for a shadow-forming beam of a random cross form 
and, hence, to find the small-angle scattering phase 
function at a given orientation of a randomly-shaped 
particle. However, of particular interest in practice 
are the scattering phase functions averaged over a 
random spatial orientation of particles. Besides, 
cirrus ice crystals are predominantly oriented in a 
horizontal plane while keeping random azimuth 
orientation. The computation of mean small-angle 
scattering phase functions is compute-intensive 
because of a large dynamic range of intensity values 
in diffraction patterns.6–8 Therefore, the shape of the 
particle shadow is usually substituted for 
approximately a circle,9,10 rectangle, or spheroid.11,12 
Such substitution is justified in direct problems of 
light scattering, but is impossible in inverse ones, 
where shapes of particles are to be restored from the 
experimentally measured scattering phase functions. 
 In this work we consider the problem of small-
angle scattering by randomly oriented particles 
independently of the shape of shadow or transmitted 
beams. To overcome the above-mentioned 
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computational problem, we go to the Fourier 
transform of the scattering phase function, which 
further will be called the shadow function. Note, 
that in our previous work13 this function was called 
S-function. As compared to the scattering phase 
function, the shadow function has a number of 
advantages. First, it has an evident geometric 
meaning, which allows a visual estimation of 
calculation results. Second, the function is strongly 
zero outside a finite domain, the size of which is 
equal to the maximal diameter of the particle 
shadow. Third, the shadow function, in contrast to 
the small-angle scattering phase function, is a smooth 
function with a small dynamic range of values. And 
fourth, the function is wavelength-independent, 
because it is determined by the scattered field of the 
near particle zone. 

1. Shadow function  
for the shadow-forming beam 

The shadow-forming beam, propagating in the 
direction of the incident plane wave propagation 
immediately behind the particle, is described by the 
equation  

( )
1 inside the particle's shadow (projection),

0 out of the shadow,

⎧
η = ⎨

⎩
ρ  (1) 

where ρ = (x, y) are the coordinates on the plane 
normal to the plane wave incidence direction; the 
function η(ρ) will be called the shadow indicator. At 
large distances from the particle, i.e., inside the wave 
zone, this field is transformed into a diverging 
spherical wave, where the field distribution over 
scattering directions is defined by the so-called 
scattering amplitude f(n), which for the shadow-
forming field is described by the classical Fraunhofer 
diffraction formula: 
 

 ( ) ( ) ( )exp d ,
2

k
f ik

i
= η −

π ∫n nρ ρ ρ   (2) 

where n is the projection of the scattering direction Ω 
( 1Ω = ) to the plane (x, y); k = 2π/λ. The small-

angle scattered field essentially differs from zero only 
near the forward scattering direction at |n| << 1, 
therefore, the scattering amplitude (2) can be 
formally considered as a function defined on the 
unlimited plane of n values. Then the energy 
conservation law is reduced to the Parseval theorem 
and has the following simple form: 

 ( ) ( )2 2| | d d ,f s= η =∫ ∫n n ρ ρ   (3) 

where s is the area of the particle shadow. 
The small-angle scattering amplitude f(n) 

contains full information on the shadow indicator 
η(ρ), which can be retrieved from the experimentally 
measured scattering amplitude by the trivial 2-D 

Fourier transform. However, in optics, instead of the 
complex scattering amplitude f(n), the real quadratic 
value of the field  

 ( ) ( )
2

I f=n n   (4) 

is commonly measured in experiments. 
The real function I(n) is a standard Fraunhofer 

diffraction pattern from a slit in a η(ρ)-shape black 
screen. In terms of the light scattering theory, I(n) 
corresponds to the conventional scattering phase 
function ( )p n , differing only, as is evident from 

Eq. (3), by the normalization factor  

 ( ) ( )/ .p I s=n n   (5) 

There arises a question whether or not all 
information on a shadow shape is retained in the 
scattering phase function? The answer follows from 
the Fourier transform of the phase function or, which 
is more convenient, the diffraction pattern I(n): 

 ( ) ( ) ( )exp d ,S I ik= ∫ n n nρ ρ   (6) 

where the inverse Fourier transform brings us back to 
the initial diffraction pattern 

 ( ) ( ) ( )
2

exp d
2

.

k
I S ik

⎛ ⎞
= −⎜ ⎟π⎝ ⎠ ∫n nρ ρ ρ   (7) 

Substituting Eqs. (2) and (4) into Eq. (6), we obtain 
the following equation: 

 ( ) ( ) ( )d ,S = η η −′ ′ ′∫ρ ρ ρ ρ ρ   (8) 

which has a clear geometrical meaning of  the shadow 
indicator autocorrelation. Just this function we will 
call the shadow function. Thus, if to measure 
experimentally the scattering phase function instead 
of the scattering amplitude, we can retrieve not the 
initial shadow indicator, but only a smoother 
autocorrelation or shadow function. 

Enumerate main properties of the shadow 
function (8). First, it takes its maximal value in the 
center ρ = 0; and the maximum is equal to the 
shadow area 

 S(0) = s.  (9) 

Then, it quickly decreases, vanishing at a distance 
from the center equal to the shadow diameter in the 
given direction on the plane ρ.  If the shadow shape 
is convex, then the shadow function falls down 
monotonically in any direction. At ρ = 0 it has a 
singularity in the form of a sharp peak. Here the 
directional derivative jumps with the sign reversion 
since S(ρ) = S(–ρ). The integral of the shadow 
function over the plane is equal to the squared 
shadow area 

 ( ) 2
d .S s=∫ ρ ρ   (10) 
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Let us compare properties of scattering phase 
functions with those of shadow functions. A small-
angle scattering phase function is formally defined by 
Eqs. (2)–(5) on unlimited plane of n values. 
Although it essentially differs from zero only in the 
central spot of |n| ≤ λ/d in size, there are also side 
diffraction lobes rapidly decreasing in magnitude and 
carrying an additional information on a shadow 
shape. Therefore, the choice of a certain limited area 
on n, where the phase function is calculated, and cell 
sizes is always accompanied by difficulties. Moreover, 
the choice depends on the wavelength, which needs 
to be fixed in calculations. None of the above-
mentioned problems appear in numerical calculations 
of shadow functions. 

Moreover, note that the scattering phase 
function for nonspherical particles is quite 
complicated and oscillating function of two variables. 
Therefore, a particle of a complex shape is usually 
approximated by some simpler particle, mostly, a 
sphere. At a level of scattering phase functions, 
numerical fitting of phase function parameters for 
different particle shapes is a formal and unobvious 
procedure. One more advantage of shadow functions 
as compared to  scattering phase functions is the fact 
that in this case the substitution of one particle shape 
to another, having a  simpler shape or a superposition 
of shapes is a geometrically descriptive and physically 
justified procedure. 

The above-introduced functions η(ρ) and S(ρ) 
depend on absolute sizes and shapes of particles. It is 
convenient for us to exclude the trivial dependence 
on absolute sizes and to consider only the dependence 
on particle shapes. To do this, we go from the 
dimensional variable ρ to dimensionless one R 
defined as 

 ,s= Rρ   (11) 

where d d d d .x y s= = Rρ   

The shadow indicator, written in these variables, 

 0( ) ( / ),sη = ηR ρ   (12) 

will be called the reduced shadow indicator. Since 

( )0η R  separates a unit area on the plane R, just the 

reduced shadow indicator 0( )η R  characterizes the 
particle shape. Absolute sizes can be easily 
introduced through going to the variable ρ. The 
autocorrelation (8) of the shadow indicator (12) gives 
the reduced shadow function 

 ( ) ( ) ( ) ( )0 0 0 d / / ,S S s s′ ′ ′= η η − =∫R R R R R ρ   (13) 

which is defined only by a shadow shape and has the 
following properties: 

 ( )0 0 1;S =   (14) 

 ( )0 d 1.S =∫ R R   (15) 

In optics of scattering media, usual subject of 
study is not a single particle but a statistical 
ensemble of particles of some size, shape, and spatial 
orientation. In this case the detector summarizes all 
diffraction patterns (4) formed by different particles. 
If N is the number of particles, then the detector 
measures ( )< >,N I n  where ( )< >I n  is the averaged-

over-the-ensemble diffraction pattern of a single 
particle with the following properties: 

 ( )< >d < >;I s=∫ n n   (16) 

 ( ) 2 2< 0 > < >/ ,I s= λ   (17) 

where <s> and <s
2> are the mean area and the mean 

squared area of the shadow. The Fourier 
transform (6) of the diffraction pattern < ( )>I n  gives 
the shadow function 

( ) ( ) ( ) ( ) ( )< > < >exp d < >dS I ik= = η η −′ ′ ′∫ ∫n n nρ ρ ρ ρ ρ ρ  

   (18) 

with the properties 

 ( )< 0 > < >;S s=   (19) 

 ( ) 2< >d < >.S s=∫ ρ ρ   (20) 

To exclude absolute sizes of particles, define the 
given shadow function for a statistical ensemble 
through Eq. (13), where the shadow area is changed 
to the mean area 

 ( ) ( )0 < / < > >/< >.S S s s=R ρ   (21) 

The normalizing condition (14) for this reduced 
function holds, while the condition (15) is 
substituted for the equation 

 ( ) 2 2

0 d < >/< > .S s s=∫ R R   (22) 

1.1. Horizontally oriented particles  

In a number of cases, ice cirrus crystals can have 
predominantly horizontal spatial orientation, in 
particular, ice plates are horizontally oriented with a 
probable spread of deviations from the horizon not 
more than 5°. The principal axes of ice columns are 
also in a horizontal plane at a comparatively random 
azimuth angle orientation. In this case, if one of the 
pairs of side faces is also horizontally oriented, such 
columns are called Parry-oriented. Note, that a 
number of halos, well known in atmospheric optics, 
are formed just by the horizontally oriented ice 
crystals. 

Consider the simplest case of light normally 
incident on a hexahedral Parry-oriented column. Its 
shadow indicator (1) is a rectangle, the side ratio 
Q = length/width of which  

 altitude/diameterQ =   (23) 

is commonly used in literature to describe hexagonal 
columns and plates. Here the diameter corresponds to 
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hexagonal sides and the altitude is the distance 
between hexagonal sides. At random azimuth 
orientation of such a column, the shadow function is 
to be averaged over the azimuth angle, that results in 
the one-variable function S0(r), where r is the 
distance from the center R = 0. 

Figure 1 shows the shadow functions (21) 
calculated at different values of Q; evidently, the 
circle function, shown in Fig. 1 for comparison, is 
the limiting one for them. 

 

 
Fig. 1. Shadow functions for horizontally oriented 
hexagonal crystals. 

 
The more elongated is the column, the more the 

shadow function deviates from the circle function. As 
is seen from Fig. 1, the shadow function for a 
horizontally oriented hexagonal plate only slightly 
differs from the circle function. Note that since the 
particle shadow area remains constant at such 
statistical averaging, all functions in Fig. 1 satisfy 
Eqs. (14) and (15). 

 1.2. Randomly oriented particles 

In case of random orientation of particles in a 
three-dimensional space, areas of their projections 
change together with orientation and the reduced 
shadow functions satisfy Eq. (22). Values of integral 
parameter Q of shadow functions calculated for 
hexagonal columns and plates are given in Fig. 2. 

 

 
Fig. 2. Relative dispersion of shadow area for randomly 
oriented hexagonal columns and plates.  

As is seen from Fig. 2, the cube-like form of 
crystals (Q ≈ 1) is the extremum. Here the particle 
shape is the closest to sphere and, hence, the 
parameter μ = <s2>/<s>2 little differs from unit. 
When going to plates (Q < 1), μ increases tending to 
the limiting value for a thin plate μ1 = 4/3, which is 
easy to obtain theoretically. When going to elongated 
columns (Q > 1), μ increases, but its limiting value 
μ2 ≈ 1.08, which can be calculated analytically  
as well.   

Shadow functions of randomly oriented 
hexagonal crystals are given in Fig. 3. Note the 
qualitative difference between columns and plates in 
shapes of shadow functions. As is seen from Fig. 3a, 
the shadow functions of hexagonal plates are close to 
the shadow function of a circle up to r ≈ 0.6. The 
exceed above the circle shadow function arising at 
1.6 > r > 0.6 fills a narrow gap between the circle 
and the limiting for a thin plate shadow functions at 
decreasing Q. Note that this excess answers to the 
increase of the above-indicated μ value. 

 

 
a 

 
b 

Fig. 3. Shadow functions for randomly oriented hexagonal 
crystals: plates (a) and columns (b). 

 

For hexagonal columns at Q >> 1 μ is not large. 
Therefore, a change in the shadow function shape 
with Q increase causes first (at r ≤ 1) a decrease of 
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S0(r) values as compared to the circle shadow 
function and then (at r > 1) the S0(r) excess above it 
(Fig. 3b). 

Underline that at a level of shadow functions 
the substitution of particle shapes by simpler ones, in 
particular, by sphere, becomes a descriptive and 
physically justified procedure. 

2. Shadow functions  

for transmitted beams 

In case of shadow-forming beams the 
polarization of the electromagnetic wave can be 
neglected, because polarizations of incident and 
shadow-forming waves at small scattering angles are 
virtually the same. In the case of a crystal with 
parallel edges, the electromagnetic scattered field, 
propagating forward immediately behind the particle, 
consists of shadow-forming and transmitted beams. In 
this case polarizations in the transmitted beams differ 
essentially. Therefore, such fields are to be described 
with accounting for the polarization, i.e., as 
transverse vector fields: 

 ( ) ( ) ( )0

0

1

.

n

m

m

m=

= − η + η∑E E Eρ ρ ρ   (24) 

Here the first summand corresponds to the shadow-
forming beam; n is the number of transmitted beams 
at a given particle orientation; E0 is the complex 
amplitude of an incident plane wave, and Em are the 
corresponding amplitudes for the transmitted beams; 
η0,m are the indicator shape functions of shadow-
forming and transmitted beams. The electromagnetic 
field, scattered at small angles in the particle wave 
zone, is defined through the vector scattering 
amplitude by the equation similar to Eq. (2): 

 ( ) ( ) ( )exp d
2

.

k
ik

i
= −

π ∫F n E nρ ρ ρ   (25) 

In general, either quadratic field values EiE
*
j

 

(i, j = 1, 2) or their linear combination in the form of 
Stokes parameters Il 

(l = 1, 2, 3, 4) are the measurable 
variables in optics. Correspondingly, small-angle 
scattering at a level of quadratic field values is 
defined by the autocorrelation of the field (24) 
similarly to Eqs. (7) and (8). This autocorrelation is 
the direct generalization of the shadow function and 
has the following form: 

 ( ) ( ) ( )* *

0 ,

.

n n
m m m t

ij i j m i j mt

m m t o
m t

A E E S E E S

= =

≠

= +∑ ∑ρ ρ ρ  (26) 

Here the first summand includes the autocorrelation 
for each beam while the second one – the cross terms 
describing the interference between the beams. Let us 

consider particles in the statistical ensemble as 
sufficiently large in size, so that at a single pass of 
the particle, the additional (related to the refractive 
index) phase incursion in the electromagnetic wave 
exceed 2π, i.e. 2πl + ϕ, where l is integer and ϕ is the 
random variable equidistributed in the interval 
[0, 2π]. In this case, when averaging over the 
ensemble, the interference term in Eq. (26) can be 
neglected. Then only the first term remains of 
interest for the further consideration. 

In the first summand of Eq. (26), the Sm 
functions are defined via the shape indicators of each 
beam 

m
η  according to Eq. (8). Though the shadow 

notion is inapplicable to the transmitted beams, we 
will by analogy call the functions Sm shadow 
functions for transmitted beams. Thus, the 
calculation of the field autocorrelation ( )< >ijA ρ  is 

reduced to calculation of autocorrelations of shadow-
forming and transmitted beams. In this case, every 
beam is described by both the scalar shadow function 

Sm(ρ) and the weighting coefficient *

.

m m
i jE E  In 

particular, the mean shadow function for the 

radiation intensity 
2 2 2

1 1 2I E E= = +E  can be 

written as 

 
( ) ( ) ( )

( ) ( )

sh 2

1

sh tr

< > < > < | | >

< > < >.

n

m

m

m

S S S

S S

=

= + =

= +

∑ Eρ ρ ρ

ρ ρ

 

 (27)

 

Remind that the two-dimensional Fourier 
transform of the shadow function (27) gives a 
statistically averaged diffraction pattern if to detect 
it with the use of a photoreceiver without a polarizer. 
In Eq. (27), the first summand corresponds to the 
shadow function of a shadow-forming beam while the 
second one is the shadow function of the transmitted 

beams. The inequality ( ) ( )tr sh< > < >S S≤ρ ρ  follows 

from the energy conservation law. At ρ = 0 the 

relation ( )tr

tr< 0 >S = σ  has a simple physical 

meaning of the mean scattering cross section for 

transmitted beams, and ( )sh
< 0 > < >S s=  for the 

shadow-forming ones. It is convenient to normalize 
the shadow function of transmitted beams by the 
same Eq. (21) as for the shadow-forming beam. Then 
the reduced function in the center R = 0 is equal to 

the ratio ( )tr
0 tr0 /< >.S s= σ  Further, as r = |R| 

increases, the reduced function of transmitted beams 

( )tr

0S R decreases being less than the reduced function 

( )sh
0< >S R  and remaining within the limits of its 

non-zero values. 
The calculated shadow functions of the 

transmitted beams for randomly oriented hexagonal 
plates and columns at the refractive index equal to 
1.31 are shown in Fig. 4. 
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Fig. 4. Shadow functions of transmitted beams for 
randomly oriented hexagonal ice crystals. 

 

As is seen, the scattering cross section of 
transmitted beams for plates attains 70% in 
comparison with the mean particle projection area 
<s>, while it does not exceed 30% for columns. Note 
that in atmospheric optics the accounting for the 
contribution of transmitted beams into the small-
angle scattering is of practical importance for 
interpretation of aureole measurement data and lidar 
signals reflected from cirrus clouds.  

Conclusion 

The small-angle scattering by large, as compared 
to wavelengths, particles of irregular form is studied 
insufficiently to date. Published works cite either 
illustrative calculation results for a diffraction 
pattern obtained for a specific particle shape or 
attempts to approximate such a pattern by diffraction 
pattern of a circle with some effective radius. The 
shadow functions introduced in our work have a 
number of important advantages as compared to 
direct calculations of diffraction patterns and, hence,  
 

are effectively applicable in different problems of the 
small-angle scattering. The procedure of substituting 
a particle shape to a simpler one becomes physically 
justified and illustrative. The obtained estimates for 
the scattering cross section of the transmitted beams 
are of practical importance for problems of aureole 
scattering and laser sensing of cirrus clouds. 
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