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We present in this paper some results of numerical investigation into two-dimensional and 
one-dimensional spectra of strong scintillations on atmospheric inhomogeneities generated by the 
internal gravity waves. The calculations are based on the model of statistically homogeneous phase 
screen. Conditions for applicability of the perturbation theory in calculating spectra of weak 
scintillations are formulated. It is shown that the perturbation theory works well in describing large-
scale scintillations even if the scintillations are strong. It is shown that, depending on the product of 
one-dimensional spectral density and the wave number, a plateau is formed, whose level is only 
determined by the value of β0, provided that it does not exceed one third of the anisotropy factor 
squared. Conditions of normalization of a small-scale part of the spectrum have been found, under 
which the scintillation spectrum coincides with the spectrum of squared coherence function on the 
phase screen. 

 

Introduction 

Observations of stars through the Earth 
atmosphere from onboard an orbiting stations1–4 have 
shown that scintillations become stronger as the 
observation sight line immerses into the atmosphere. 
The scintillation variance approaches unity at some 
altitude of the sight line perigee. This altitude 
depends on the radiation wavelength and the distance 
from the observer to the perigee point of the sight 
line. Usually, this altitude is from 25 to 30 km.1  

As follows from the nowadays understanding of 
the fine structure of air density in the stratosphere 
and troposphere, the inhomogeneities of the refractive 
index are formed locally by the isotropic turbulence 
and internal waves. Analysis of the satellite 
observations of the stellar scintillation has also 
confirmed it.3,4 These results are in a good agreement 
with a 3D-model of spatial spectrum for the 
refractive index inhomogeneities,5,6 being the sum of 
two components, namely the isotropic (Kolmogorov) 
one and the component of anisotropic inhomogeneities 
strongly extended along the Earth surface.  

The research presented in this paper aimed at 
studying spatial spectra of strong scintillations 
formed by anisotropic inhomogeneities in the 
observation plane. The investigation has been carried 
out numerically using a phase screen model. This 
model is widely applied in studying the 
inhomogeneities of interplanetary medium and the 
atmospheres of solar system planets including the 
Earth’s atmosphere and ionosphere. The integrated 
relations are known for this model relating the 
fluctuation spectra of the electromagnetic wave 
intensity (scintillation spectra) in the observation 

point with the spectra of phase fluctuations on an 
effective phase screen. The phase fluctuations, in its 
turn, are determined by spectra of the medium 
refractive index fluctuations, through which the wave 
propagates.  

Shishov7,8 has formulated the integrated 
relations in the most general form. In his studies he 
also derived asymptotic formulas for two-dimensional 
scintillation spectra formed by the screens with 
piecewise power-law isotropic spectra of phase 
fluctuations. These asymptotics correspond either to 
small or large values of wave numbers. At present, 
description of the scintillation spectra in the 
intermediate range of wave numbers is only possible 
in terms of numerical integration of the initial 
equations. The one-dimensional spectra observed in 
practice are the integrals of two-dimensional spectra 
along the straight lines, which can cross the regions 
with unknown asymptotics. Therefore, there is no 
any alternative to numerical methods in describing 
one-dimensional spectra of strong scintillations. 

There are many publications on numerical 
studies of strong scintillation spectra formed by phase 
screens. Some studies9–11 are close to that presented 
in this paper. The two-dimensional scintillation 
spectra behind the isotropic phase screens were 
investigated in Refs. 9 and 10 and these were 
characterized by the small, compared to the Fresnel 
one, inner scale and different exponents in the power-
law sections. The one-dimensional scintillation 
spectra were investigated in Ref. 11 behind two-
dimensional anisotropic phase screens with the 
power-law inhomogeneity spectra, where the 
exponents of a power are more than three and less 
than four. Our statement of the problem differs in 



V.V. Vorob’ev et al. Vol. 19,  No. 12 /December  2006/ Atmos. Oceanic Opt.   901 
 

 

that we consider the models of the screen spectra 
allowing for both the anisotropy and large, compared 
to the Fresnel one, external and minimum scales. 

Equations for scintillation spectra 
behind the statistically homogeneous 
phase screen and their asymptotics 

Let us assume that a plane light wave of unity 
intensity is incident on a phase screen (plane (z, y)). 
Having in mind that the results obtained could be 
applied to the scintillation observations through the 
Earth’s atmosphere, we shall choose a vertical in the 
beam perigee plane as z-axis. The scintillation 
observations are carried out in the plane that is 
parallel to the phase screen at the distance L from it. 
The two-dimensional scintillation spectrum or the 
spectrum of relative fluctuations of the light 
intensity in the observation plane ΔI(z, y, L) = 

( , , )/ 1,I z y L I= < > −  where < I > denotes the average 

value of light intensity (over an array of random 
realizations), is determined by the equations7,8: 
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where 0 2 / ,k = π λ  λ is the light wavelength; L is the 
distance from the screen to the observation plane. 
The functions DS and FS are, correspondingly, the 
structure function and the spectrum of eikonal 
fluctuations on the phase screen. 

The scintillation observations from onboard a 
spaceborne platform are carried out along its flight 
trajectory. In interpreting data of such observations 
one-dimensional spectral densities, VI(κ, ϕ), of 
scintillations observed in the plane x = L along the 
straight line inclined with respect to the z–axis at an 
angle of ϕ are important, where κ is the wave number 
along the chosen straight line. In this paper, we shall 
restrict ourselves  to the critical angles ϕ = 0 and 
ϕ = π/2. The one-dimensional spectra corresponding 
to these angles will be called vertical Vver and 
horizontal Vhor spectra. These are determined as  
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Models of the phase fluctuation 
spectra  

In specific calculations, the two-dimensional 
spectra of eikonal fluctuations FS were set as follows 
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where 2 2 2
,z yK = κ + η κ  η is the anisotropy factor; C 

is the parameter characterizing the fluctuation 
intensity, L0 and l0 parameters are the outer and 
minimum scales, respectively. Spectra (5) and (7) are 
the generalization of power-law spectrum ∼ K–5 
typical for the inhomogeneities generated by the 
internal gravity waves in the stratosphere. The 
spectrum model (6) is characterized by the critical 
value of the exponent α = 4 in the spectrum power-
law portion FS ∼ K–α

 in the range 

0 0(1/ 1/ ).L K l� �  For the spectrum S( )F K K
−α

∼  

at 4,α ≥  no DS structure function exists. Model (7) 

differs from the model (5) by the spectrum behavior 
in the region of small and large wave numbers: 

SC constF →  at 0| | 1K L �  and 9

SC | |F K
−

→  at 

0| | 1.K l �  It is convenient to use model (7) in 

calculations, since the corresponding one-dimensional 
spectrum and the structure function are set by the 
analytical expressions: 
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where 

2 2 2( , ) / ;r z y z y= + η  1( ) 1 exp( | |),d ξ = − − ξ   

2( ) 1 [1 | |]exp( | |).d ξ = − + ξ − ξ  

Simple asymptotic relations are known8 for the 
scintillation spectra at small and large wave numbers.  

At ( , 0),z yκ κ →  0.Ψ →  By expanding the 

exponential  term  of  Eq. (1)  into a series, we obtain 

(4)
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If taking only one term of a series, Eq. (10) yields 
the formula of perturbation method of the geometric 
optics method  

 (1) 2 2 2 2
S( , ) ( , )( ) .I z y z y z yF L Fκ κ = κ κ κ + κ  (11) 

The spectrum (11) determines the variance 2
0β  of 

weak scintillations in the geometric optics: 
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The quantity of 2
0β  is one of the basic parameters 

determining the scintillation spectra at a given 
distance from the screen. Allowing for Eqs. (11) and 

(3), 2
0β  can be presented as  
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are the characteristic distances, at which the 
radiation is focused by the phase screen along vertical 
and horizontal directions, respectively. The variance 

2

θσ  of the refraction angle fluctuations is significant 

in the formation of strong scintillation spectra 

together with the screen parameter 2
c.σ  It is 

determined as  
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Another asymptotic equation following from 

Eq. (1) at large wave numbers8 
0 0/KL k L�  is the 

equation 
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since for the spectra (5)–(7) the structure function 
 

 S( , ) const,D z y →  S( , , , ) ( , )z y z y D z yΨ κ κ =  

at 0 0| | , | | .z L y L η� �  The scintillation spectrum (16) is 

the spectrum of the squared coherence function  

 2 2

2 0 S( , ) exp[ ( , )]z y k D z yΓ = −   

for the light field on the phase screen.  
In this paper we propose a generalization of the 

asymptotic formulas (11) and (16) applicable to 
calculation of scintillation spectra behind the screen 
with the large-scale inhomogeneities in a wider 
region. In order to formulate these in a more compact 
form, it is convenient to pass to the dimensionless 
variables: Z = z/RF, Y = y/RF, p = κzRF, q = κyRF, 

where F 0/R L k=  is the Fresnel scale. 

Equation (1) is written, using these variables, as 
follows 
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and Eq. (2) remains the same. Spectral parameters of 
the screen inhomogeneities FS and the corresponding 
structure function are normalized in the way as the 
variables do. 

Let l0Z and l0Y be the dimensionless minimum 
scales of the structure function DS(Z, Y). In the 
vicinity of the point with Z and Y coordinates, the 
function DS(Z + z′, Y + y′) can be approximately 
presented as  
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AY,Y are the first and the second derivatives of the 
DS function with respect to the coordinates indicated 
in the subscripts. Then for the asymptotics of the 
spectrum (1), allowing for the definitions by Eqs. (2) 
and (3), we obtain 
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at 0, 0,| | , | | .Z Yp l q l� �  Here 
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Asymptotics (19) for the scintillation spectrum 
is a refractive one (or geometric optics one). It 
represents the generalization of the formula (11) in 
the first approximation of the perturbation method of 
the geometric optics in the case of strong 
scintillations. The asymptotics (20) we shall call the 
diffraction one. Let us note that terms “refraction 
and diffraction scintillations” are widely used in 
astrophysics in order to denote the large-scale and 
small-scale ranges of scintillation spectra.9,10 For 
description of these spectra, Eqs. (11) and (16) are 
applicable, respectively. The applicability of 
Eqs. (19) and (20) at scintillations caused by the 
large-scale inhomogeneities is essentially wider than 
that of Eqs. (11) and (16). This fact is confirmed by 
the comparison of the results on the scintillation 
spectra calculated by formulas (1)–(3), and by the 
approximate formulas.  

Two-dimensional scintillation spectra 

Figure 1 gives a general idea of the properties of 
two-dimensional weak and strong scintillation spectra 

generated by isotropic and anisotropic 
inhomogeneities. 

It represents the lines of scintillation spectrum 
levels GI(κz, κy), the products of the spectral density 
FI(κz, κy), and the squared module of the wave 

number 2 2( )z yκ + κ  normalized to the maximum value 

of this product, i.å.,  

2 2 2 2( , ) ( ) ( , )/max[( ) ( , )].I z y z y I z y z y I z yG F Fκ κ = κ +κ κ κ κ +κ κ κ

 

  
(22) 

These quantities are calculated using the phase 
screen model (7). In all calculations we used the 
following values, λ = 5 ⋅ 10–7 m, L = 2200 km, 

F /2 0.42 m,R L= λ π =  L0 = 200 m, and l0 = 10 m 

as constants. The left column in Fig. 1 presents the 
two-dimensional weak scintillation spectra at η = 1, 
2, and 10. Calculations of the weak scintillation 
spectra were also made for other values of η. These 
calculations have shown that even at η = 1.015, there 
is an apparent difference in scintillation spectra 
behind the isotropic and anisotropic screens in the 
vicinity of spectral maxima. The rearrangement at 
η = 2 effects the entire spectrum, while at the further 
increase in η, the spectral pattern does not change 
qualitatively.  

 

 
Fig. 1. Lines of two-dimensional scintillation spectra levels GI(κz, κy), determined by the formula (22), depending on η. 
Regions near the maximum, where GI ≥ 0.9 are darkened. 
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Weak scintillation spectra behind an isotropic 

screen have the maximum at 2 2

00.7/z yk l= κ + κ ≈ ; 

the spectrum width (at 1/3  of the maximum value) 
equals approximately to 2/l0. Almost the same 
coordinates have the maximum and spectral width 
behind the anisotropic screen in vertical sections 
(κy = 0), irrespective of η. The principle difference 
between the scintillation spectra behind the isotropic 
and highly anisotropic screens (η > 2) is that behind 
the anisotropic screen the spectrum is concentrated in 

the sector | |/| | .z yκ κ ≥ η  Thus, at larger values of the 

anisotropy coefficient η, scattering takes place only 
within a narrow sector near the vertical.  

Strong scintillation spectra (see Fig. 1) are 
calculated by the formulas for diffraction asymptotics 
Eq. (20) for β0 = 1, 2, and 3 and η = 1, 2, and 10. Let 
us note that wave numbers – both vertical and 
horizontal are normalized not to the minimum scale l0 
at strong fluctuations, but to the radius of coherence 
lñ, determined by the equation 

 2

0 S c( ,0) 2.k D l =  (23) 

The values of lñ for the spectrum model (7) at 
the calculated values of β0 are equal to 3.9 ⋅ 10–3 m 
(at β0 = 1), 1.9 ⋅ 10–3 m (β0 = 2), and 1.3 ⋅ 10–3 m (at 
β0 = 3). Therefore, lñ is approximately 103–104 times 
less than l0. The spectrum of strong scintillations 
spreads as compared with that of weak scintillations 
by this same factor. The small-scale component of the 
scintillation spectrum appears due to the radiation 
focusing by the large-scale random lenses of phase 
screen (with sizes on the order of L0). The radius of a 
light spot a when focused by the perfect lens at a 
distance L can be estimated by the formula 

0 0/( ).a L k L≈  The characteristic scale of the 

interference pattern formed by inhomogeneities 
separated by the L0 distance in the phase screen plane 
has the same order of magnitude. The parameters 

chosen for calculation are 3
2 10a

−

≈ × m, i.å., the 
same as the values of coherence radii. 

One-dimensional vertical scintillation 
spectra  

As was mentioned, the one-dimensional 
scintillation spectra, in particular, vertical and 
horizontal, determined by formulas (4) are of a 
special interest for practical applications. 
Calculations for the vertical spectra were carried out 
by asymptotic formulas for a model of one-
dimensional phase screen. The assumption of the 
applicability of the one-dimensional phase screen 
model to calculation of the vertical spectra formed by 
two-dimensional anisotropic screens with rather high 
η, has been formulated earlier.12 The one-dimensional 
asymptotic formulas following from Eqs. (19) and 
(20), if DS does not depend on y coordinate in 
dimensional variables, have the following form: 

refraction asymptotics 

 2 2
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is the structure function of the refraction angle 
fluctuations on the phase screen; 

diffraction asymptotics in one-dimensional case 
is reduced to the algebraic expression  

2
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0 00 0

1
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I z
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V
k D L kk D L k θθ
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Note that both, refraction and diffraction 
asymptotics, are determined by one function, Dθ. 

The numerical calculations of one-dimensional 
vertical and horizontal spectra were carried out for 
the models of eikonal fluctuation spectra (5) and (6) 
at η = 10. The calculated vertical spectra are shown 
in Figs. 2 and 3.  

Figure 2à presents the large-scale parts of one-
dimensional vertical scintillation spectra for the 
model (5), Fig. 2b presents that for the model (6). 

These spectra are normalized to the value of 2

0.β  Such 
a normalization allows one to estimate the 
applicability of the perturbation theory to calculation 
of a large-scale part of the one-dimensional 
scintillation spectra. If the perturbation theory were 
applicable to the description of scintillation spectra, 
all the curves in Fig. 2 would coincide with the 
dashed lines.  

With increasing 2

0,β  the applicability of the 
perturbation theory gets narrower. In particular, 

when 2

0 100,β =  the perturbation theory is applicable 

to the description of spectrum interval 3

F 10zR
−κ ≤  

or 01/ .
z

Lκ ≤   
As follows from the data presented in Figs. 2à 

and 3, the one-dimensional refraction asymptotics is 
applicable to calculation of the scintillation spectra 
behind two-dimensional screen over the range of 

wave numbers 4

F 2 10
z
R

−

κ ≥ ⋅  or ( 01/
z

Lκ ≥ η ) at 
2

00.1 100.< β <� �   
Unlike the applicability of the perturbation 

theory, the applicability of the refraction 
asymptotics (24) extends with increasing β0 into the 
region of large wave numbers. At β0 ≥ 1, it is 

applicable over the range of F 0 F( / ),zR l Rκ ≤  whereas 

in the region of weak scintillations at 2

0 0β → , the 
applicability of the refraction asymptotics is limited 
by the wave number from above by the well-known 
condition F 1

z
Rκ ≤ . 
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à 

 

b 

Fig. 2. The one-dimensional vertical scintillation spectra in 
the region of small wave numbers: (à) behind the screen 
with spectrum (5), (b) behind the screen with spectrum (6) 
at η = 10. Continuous lines: ( à) denote the data calculated 
by the refraction asymptotics for one-dimensional screen 
model by the formulas (24), (25); dots show data calculated 
by formulas (1)–(4). No calculations approximate formulas 
were made for the model (6). 

Figure 3 presents the small-scale parts of one-
dimensional vertical scintillation spectra behind the 
screens with the spectra (5) and (6). The wave 
numbers are normalized to RF, as in Fig. 2. One can 
see the difference in scintillation spectra behind the 
screens with various eikonal fluctuation spectra. This 
difference is almost insignificant, if the wave 
numbers are normalized to the coherence scale lc. 
There is a plateau clearly distinguished in spectra 

with the functions ( ) const,z I zVκ κ ≈  

ver
( ) const.

z z
Vκ κ ≈  

 

 

Fig. 3. The one-dimensional vertical spectra in the region  
of large wave numbers normalized to the reverse Fresnel 
scale RF. Lines are the calculations on diffraction 
asymptotics (26) for the one-dimensional screen model, dark 
tags denote the calculation data by the formulas (1)–(4) for 
model (5), light tags denote the calculation data for model (6). 

 

The data calculated by formula (26) and by the 
exact formulas for two-dimensional screen at η = 10 
coincide accurate to 1% over the ranges of wave 

numbers 3/2
0 0(2 3)/( )

z
lκ ≥ − β  at 

2

00.1 100.≤ β <�  These 

results point out the correctness of both one-
dimensional screen model and refraction and 
diffraction asymptotics for the description of one-
dimensional vertical spectra within the range of the 
parameters variation used in this study. The 
applicability of the refraction and diffraction 
asymptotics can overlap within a significant interval 
of wave numbers, where the spectrum plateau is 

observed ( ).z I zVκ κ  As follows from formula (24) at 

1
z
L θκ σ �  and formula (26) at 0 0/ ,

z
l k Lκ � the 

spectrum level on the plateau is determined by the 
relation 

 (p)
2
00

1 1
( ) exp .

22
z zI
V

⎛ ⎞
κ κ = −⎜ ⎟

βπβ ⎝ ⎠
 (27) 
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It depends on the single parameter of scintillation 
problem, namely, on β0, equal, according to Eq. (13), 
to the ratio of the distance L to the effective radius 
of curvature of the eikonal F

z
 on the phase screen. 

 As follows from the asymptotic formula (26), 

the spectrum ( )z I zVκ κ  reaches its maximum value 

max [ ( )] 1/ 2 0.242z I zV eκ κ = π ≈  at 2

0( / ).
z z

D L kθκ = κ  

Formula (26) allows estimating the wave number 
range where the scintillation spectrum is normalized 
behind the one-dimensional screen, i.å., represents 
the spectrum of squared coherence function of the 
light field. In one-dimensional case, behind the 
screen with large-scale inhomogeneities, the spectrum 
of squared coherence function is presented as  

 
2

2

00

1
( ) exp ,

2 ( )2 ( )

z

I zV
k Dk D θθ

⎛ ⎞κ
κ = −⎜ ⎟

∞π ∞ ⎝ ⎠
 (28) 

i.å., it presents a limiting expression following from 

Eq. (26) at 0 0/ ,
z
L k Lκ �  when ( ) ( ).D z Dθ θ= ∞  

Figure 4 illustrates the type of structure functions 

( )D zθ  for the considered models of the spectra. 

 

 
Fig. 4. Structure functions of the refraction angle 
fluctuations for models (5) (curve 1), (6) (curve 2) and  
(7) (curve 3). 
 

In the region of 0z l≤ , there is a function 
2 2 2

0( ) /D z z Lθ ≈ β  for any eikonal spectra. The 

dependences of Dθ(z) have maximum at 0(2 3)z L≈ −  

and reach the fixed level of Dθ(∞) at 0.z L�  It is an 

important feature of the structure functions Dθ(z) 
and Dθ(∞) that their difference is insignificant at 

0.z L≥  The value Δ = max [Dθ(z)]/Dθ(∞) – 1 does 

not exceed 20% at 0z L≥  over the range of the ratio 

0 00.01 / 0.1l L≤ ≤  for all the three models. Having 

this in mind, one can accept 0 0/
z
L k Lκ ≥  as the 

applicability condition for formula (27). This 

condition has a clear physical meaning in the angular 

representation 0/z kξ = κ  and written as 0| | / .L Lξ ≥  

It means that normalization can be observed in the 
angular range where scintillations are formed by the 
screen inhomogeneities separated by distances longer 
or equal to the outer scale of inhomogeneities.  

The conclusions about the applicability of one-
dimensional screen model to calculation of the 
vertical spectra were drawn based on their 
comparison with the calculated data for the region 
behind the screen at η = 10 and 0 10.β ≤  The 

calculations made using large values of β0 have 
shown that the one-dimensional screen model 
becomes incorrect. Strong focusing by screen 
inhomogeneities on the horizontal axis is not taken 
into account in one-dimensional model. The effect of 
this focusing can be significant, under condition 

that 2
,y zF F L≈ η <�  where yF  and 

z
F  are the effective 

radii of curvature along the horizontal and vertical 

directions. This condition can be written as 2

0 1β η >�  

allowing for 0 / .
z

L Fβ =  Incorrectness of the one-
dimensional screen model in the case of a one-
dimensional vertical spectrum manifests itself, in 
particular, in that the level of the spectrum plateau 

( )z I zVκ κ  behind a two-dimensional screen can differ 
from the level determined by formula (27). The 
quantitative applicability conditions for one-
dimensional screen model can be formulated based on 
calculations by the formulas for the two-dimensional 
diffraction asymptotics (20). Calculations for  
model (5) with η = 5, 10, and 15 have shown that 
error of calculations of one-dimensional vertical 
scintillation spectra behind an anisotropic screen by 
formulas for one-dimensional screen does not exceed 

10%, if 2

0 0.3 .β ≤ η  

Horizontal scintillation spectra 

The results calculated for horizontal spectra are 
presented in Fig. 5. Figure 5à presents the spectra at 
small wave numbers. They were calculated only by 
exact formulas (1)–(4). Let us note that for the 
horizontal spectra calculated at 0,yκ →  the 

perturbation theory is not applicable already at 
2

0 1β = . Figure 5b presents the horizontal spectra at 
large wave numbers. They were calculated both by 
exact formulas (marked by asterisks), and by the 
formulas for two-dimensional diffraction 
asymptotics (20) (solid lines) with subsequent 
calculation of the second integral (4). As follows 
from the comparison of results by exact and 
approximated formulas, they almost do not differ 
over the range of wave numbers 

F 00.01/ 2.5/( )y r lκ ≥ ≈ η  for all calculated values  

of 2

0.β   
Let us note that in contrast to vertical spectra 

(see Fig. 3), where the plateau of the product of 
κzVI(κz) and κzVver(κz) is occurs over a wide range, in 
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the horizontal spectra the plateau of κyVhor(κy), strictly 
speaking, does not forms. Roughly, accurate within 
10%, this plateau is formed over a narrow range of 

the wave numbers 0 F2.5/( ) 1.yl rη ≤ κ ≤  It also should 

be noted that dependence of the function maximum 

hor( )y yVκ κ  on 2

0β  at 2

01 1000≤ β ≤  is nonmonotonic, 

i.å., horizontal spectrum is not normalized even at 
2

0 1000β = . 

 

 
à 

 
b 

Fig. 5. Horizontal scintillation spectra behind the phase 
screen with spectrum (5) at small (à) and large (b) wave 
numbers. 

Conclusion 

The calculations for strong scintillation spectra 
formed by atmospheric inhomogeneities and generated 
by internal gravity waves have been made using the 
model of statistically homogeneous phase screen. 
Inhomogeneities are characterized by the anisotropy 
of their spectra; moreover, their dimensions exceed 
the Fresnel’s zone scale in the observation plane.  

The applicability limits of the perturbation 
theory in calculating the scintillation spectra have 
been investigated. The large-scale part of the vertical 
scintillation spectra is shown to be described by the 
perturbation theory even when scintillations are 
strong, the root-mean-square value of the relative 
fluctuation of  intensity β0 calculated according to 
the perturbation theory, being about 10. At the same 
time, the perturbation theory is inapplicable to the 
description of the small-scale part of the vertical 
scintillation spectra already at β0 > 0.3. For 
description of large-scale range of the horizontal 
scintillation spectra, the perturbation theory is 
applicable, if β0 ≤ 1.  

The asymptotic formulas for description of large-
scale and small-scale scintillation spectra have been 
proposed, called the refraction and diffraction 
asymptotics. Their applicability and applicability of 
the one-dimensional screen model have been 
investigated in calculation of vertical spectra behind 
the two-dimensional anisotropic screen. The one-
dimensional model is shown to be applicable for 
calculation of small-scale spectral range under 

condition that 2

0 0.3 .β ≥ η  If this condition is 

satisfied, the product of the one-dimensional spectral 
density and the wave number has a plateau, whose 
level is determined only by the value of β0. In the 
region of large-scale wave numbers the maximum in 
the scintillation spectrum is formed with the value 
equal to 0.242.  

The normalization conditions for the small-scale 
part of the spectrum have been formulated. Under 
these conditions, the scintillation spectrum is the 
spectrum of squared coherence function on the phase 
screen. Normalization is possible over the range of 
scattering angles larger than the ratio of the outer 
scale to the distance between the phase screen and 
the observation point. 

Acknowledgments 

The authors are thankful to A.S. Gurvich for 
participation in the statement of the problem and 
valuable remarks and to V.À. Banakh for discussion 
of the results.  

The work was supported by the Russian 
Foundation for Basic Research (project No. 06-05-
64357). 

References 

1. A.S. Gurvich, V. Kan, S.A. Savchenko, et al., Izv. Ros. 
Akad. Nauk, Fiz. Atmos. Okeana 37, No. 4, 469–486 
(2001). 



908   Atmos. Oceanic Opt.  /December  2006/  Vol. 19,  No. 12 V.V. Vorob’ev et al. 
 

 

2. A.S. Gurvich, V. Kan, S.A. Savchenko, et al., Izv. Ros. 
Akad. Nauk, Fiz. Atmos.  Okeana 37, No. 4, 487–501 
(2001). 
3. A.S. Gurvich and V. Kan, Izv. Ros. Akad. Nauk, Fiz. 
Atmos. Okeana 39, No. 3, 335–346 (2003). 
4. A.S. Gurvich and V. Kan, Izv. Ros. Akad. Nauk, Fiz. 
Atmos. Okeana 39, No. 3, 347–358 (2003). 
5. A.S. Gurvich and I. Chunchuzov, J. Geophys. Res. 
110(D3). D03114, doi:10.1029/2004JD 005199 (2005). 
6. A.S. Gurvich and V.L. Brekhovskhikh, Waves Random 
Media 11, No. 3, 163–181 (2001). 

7. V.I. Shishov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 14, 
No. 1, 85–92 (1971). 
8. V.I. Shishov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 17, 
No. 11, 1684–1691 (1974). 
9. J. Goodman and R. Narayan, Royal Astronom. Soc., 
Month. Notices 214, No. 4, 519–537 (1985). 
10. J.J. Goodman, R.W. Romani, R.D. Blandford, et al., 
Royal Astronom. Soc., Month. Notices 229, No. 1, 73–102 
(1987). 
11. D.P. Hinson, Radio Sci. 21, No. 2, 257–270 (1986). 
12. C.L. Rino, Radio Sci. 15, No. 4, 855–867 (1980).

 


