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FOUR-WAVELENGTHS LIDAR SENSING OF ATMOSPHERIC AEROSOL 
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We present experimental results on four-wavelength lidar sensing of urban aerosol. 
The measurements were calibrated at the operating wavelengths using calibrated screens. 
The lidar data were processed using parametric and moment models of the aerosol optical 
properties. Uncertainties are assessed using the reduction technique, and the validity of 
the mathematical models is verified using a model reliability parameter. 

 
 

Introduction 
 

Remote lidar sensing is an effective tool for 
gathering information on the optical and micro-
physical parameters of atmospheric aerosol1,2. A va-
riety of models of atmospheric aerosol are used for 
lidar data reduction3,4, and analyses of lidar data 
employ such methods as optimal parametrization5 and 
linear estimation6. The analysis of uncertainties in the 
parameters thus reduced is a complicated problem, 
certain aspects of which have been discussed7 as they 
relate to the optical characteristics of aerosol. 

In general, any processing scheme assumes a 
certain measurement technique, including mathe-
matical models of the aerosol and the instrumentation. 
For this reason, it is necessary to analyze the validity of 
the mathematical model of the experiment along with 
the processing errors. Such an analysis of validity based 
on measured data is a very complicated problem, and 
usually is not undertaken in lidar experimental studies. 

This paper details studies of the optical and 
microphysical parameters of atmospheric haze based on 
four-wavelength lidar sensing. Data interpretation and 
reduction uses various models of aerosol microstruc-
ture. Parameter uncertainties are monitored using the 
reduction technique8, and the validity of the model 
used is verified using the reliability parameter9. 
 
EXPERIMENTAL SETUP AND MEASUREMENT 

TECHNIQUE 
 

The experiment was carried out using the lidar 
facility designed at Moscow State University, which  

provided radiation at 1064 nm, 532 nm, 355 nm and 
694 nm. Emission at the first three wavelengths was 
obtained using a YAG:Nd3+ laser and frequency 
doubler (CDA crystal) or tripler (KDP crystal); the 
fourth was obtained with a ruby laser. The ruby laser 
beam was collimated using a beam expander, reducing 
the beam divergence to 1.5 to 2 mrad. The YAG:Nd3+ 
laser output was practically single-moded, yielding a 
beam divergence of 1.5 mrad with no further colli-
mation. A 240-mm diameter Maksutov-Cassegrain 
telescope as used as the lidar receiver. Backscattered 
radiation was detected with FEU-84 and FEU-83 
photomultiplier tubes. 

Absolute calibration of the lidar measurements 
was performed using the calibrated screens tech-
nique10. Screens made of Teflon and polyurethane were 
placed at zs = 750 m from the lidar; the spectral and 
angular characteristics of radiation reflected from the 
screens were determined under laboratory conditions. 
In the single-scattering approximation, the calibration 
constants are 
 

 
 
where W0(1)is the lidar pulse energy of at wavelength 
1; P(zs, 1) is the magnitude of the signal received 
from a screen at the distance zs, (1) is the reflection 
coefficient of the screen at 1. The uncertainty in the 
calibration constants is about 25 per cent. 

The results of measurements made on October 16, 
1987 in the Lenin Hills region of Moscow are pre-
sented in Table 1. 
 

Table 1 
 

P(1, z), 10–2v wavelength  
1, nm 

i, km2v 
sr–1mJ 

i, ns energy  
W0(i), mJ z =0.9 km 

 
1.05 1.2 1.35 

1064 72 15–20 14.1 0.45  0.23 0.45 0.2 –0.1 
694 27 25–30 82.7 5.0  1.0 4.0 2.6 1.0 
532 2560 15–20 6.9 55  10.0 32.5 17.5 10.0 
355 1162 15–20 1.2 11  2.0 6.0 9.0 1.6 

 
The measurements were made at night in clear 

weather. The visibility Sm was 10 to 15 km, and the 
relative humidity was about 50 per cent. Lidar returns 
from the screens and their uncertainties P are pre- 

sented in Table 1 for different z between zs and 
zr = 1350 m. In the single-scattering approximation, 
and neglecting molecular scattering, one can write 
down the normalized lidar return from aerosol as 
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(1) 

 

 
 

 
 
where I is the number of wavelengths used; 
(z, 1, m) and (z, 1, m) are the volume back-
scattering and extinction coefficients, respectively; z is 
the range, and m is the complex index of refraction of 
the particulate matter. 
 

MODELS OF ATMOSPHERIC AEROSOL 
 

Mathematically, lidar sensing of aerosol can be 
represented by 
 

 
 

 (2) 
 
where f is the vector of the parameters sought, A(f) is 
a nonlinear operator whose form depends on the ap-
proximation and aerosol model used, R  and R are the 
spaces in which the vectors f and  (vector of lidar 
signals) are defined, respectively;  is the measurement 
uncertainty, with mean value equal to zero. The 
correlation operator E for uncertainties is by a di-
agonal matrix whose elements are the measurement 
uncertainties in the presence of noise alone. 

The lidar interpretation problem consists of es-
timating the vector f based on the observed values of 
the backscattered signal . The parameters f might be 
for example, those of the aerosol size distribution 
function (r) (r, m, N in the case of -function dis-

tribution) or its moments 
0

( ) .j
jM N r r dr



    

Most models of atmospheric aerosol assume that the 
aerosol particles are spherical and homogeneous. Then 
 

(3) 

 

(4) 

 
where N(z) is the number density of particles, K and 
K are the extinction and backscattering efficiency 
factors, respectively, for particles of radius r at 
wavelength 1. 

In this paper we have used the following aerosol 
models: 

a) the moments model11, in which the back-
scattering and extinction coefficients are represented 
as linear sums of moments of the function (r), which 
are generally unknown: 
 

 
 

 (5) 
 

The expansion coefficients Âij, Dij are in fact the 
expansion coefficients for the efficiency factors 
K(r, 1, m), K(r, 1, m) expressed as a power series in r: 
 

 
 

 (6) 
 

b) the parametric model, in which the function 
(r) is assumed to be known. Here, in this work, we 
use a -function distribution with unknown parame-
ters r, , N; i.e., 
 

 
 

 (7) 
 
In this model, the optical characteristics  and  are 
calculated using expressions (3) and (4), where the 
kernels K and K are calculated numerically using the 
Mie formulas12. 

Since such an approach is computationally ex-
pensive, an approximate analytical parametric model13 
is also used which gives functional forms for  and  
 

1( , , ),F r N    2( , , ).F r N    
 
For the approximation (6) in the moment model, 
prescribing (r) enables one to write down the mo-
ments Mj in terms of r, , N: 
 

 (8) 
 

The problem then reduces to finding the parameters r, 
, N, which according to (5) determine the optical 
characteristics of the aerosol. Such a model could be 
called the parametric moments model. 
 

THE REDUCTION TECHNIQUE IN 
APPLICATION TO THE EXPERIMENTAL DATA 
INTERPRETATION AND THE RELIABILITY OF 

THE MATHEMATICAL MODEL 
 

The problem of estimation errors is of paramount 
importance in the process of data interpretation. The 
reduction technique8 enables one to interpret the ex-
perimental data with minimum uncertainties within the 
framework of a linear model of the measurement scheme. 
In this model, one can introduce the sensitivity f of the 
desired parameters to errors in the experimental data : 
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 (9) 
 

where 
1

2
  is the normalized variance of the back-

scattered signal at wavelength 1. In the parametric 
models, 2

f  is the mean variance of the parameters ,r  

, and N of the size-distribution function ( ).r  In the 
case of identical Mj+1 or optical parameters (1), 
(1), 

2
f  can be defined as 

 

 
 

or  (10) 
 
Consider now a linear approximation to the nonlinear 
operator A(f): 
 

 
 
where f is the desired parameter vector for which the 
linearization of operator A is being performed. The 
linear operator A is a matrix whose elements are the 
derivatives ij i j f=f

.A A f    

In this work the linearization was carried out 
using the least squares method: 
 

 
 
As a result, after linearization, we have transformed 
from (2) to a linear model [A, ],in which the 
measured lidar return   is 
 

 
 
The basic idea of the reduction technique as applied to 
lidar sensing is to transform the experimental data   
into the form they would have if the vector of aerosol 
parameters were measured directly. In other words, we 
seek a transformation T of the backscattered signal   
that could be interpreted as a direct measurement of f, 
distorted by a minimum possible error8 h. The trans-
formation T is chosen according the condition 
 

 
 

(11) 

 

The error h = E CTC
2
 = ECT   – fC

2
 is called the 

reduction error. Thus, using the reduction technique 
for linearized lidar models, one can estimate the 
aerosol parameters f with known uncertainty, which is 
minimed within the framework of the model used. 

The parameter estimates T  and reduction error 
h depend on the measurement model used. The validity 
of the model can be assessed In terms of its reliability 
(), which in fact is the probability of erroneously 
rejecting the model, based on the measured data  and 
additional information. For the model [A, ] and 
assuming normally distributed measurements errors, 
one obtains9 
 

 (12) 
 

were f̂ T   is the solution of the reduction problem 

(11), and 2 (t)P


 is 2 distribution with k = dim R – 

dim R(A) degrees of freedom. 
The reliability (12) characterizes the validity of 

the linear approximation. 
 

Interpretation and discussion of the experimental 
results 

 
For the conditions under which the experiment 

was carried out (relative humidity 50 per cent) we 
took3 m = 1.5 – i 0 3. 

Since the number of wavelengths is insufficient 
for a reconsruction of the function (r) from the 
sensing data, using only Eqs. (1), (3), and (4) with no 
a priori assumptions2, one can only determine the gross 
characteristics of the size-distribution function. 

An analysis of these data shows that the ex-
perimental results are in good agreement with a gamma 
distribution of the probability for 0r  over the full 
range of possible D/r0 values. In addition, we see from 
these data that at large values of  for H2O were taken 
to be 82 for the static field and 1.77 for the optical 
wave. The expression used for calculations is valid 
only for low concentrations. The results obtained are 
presented in Table 2. 
 

Table 2 
 

Models 
Parametric 

 
Moments  

Momenta (j = 4) 
 

Parametric Analytical Momenta (j = 8) 
M2, m2cm–3 8.0  10 14.0 15.8 15.6 
M3, m2cm–3 5.0  1.0 5.0 5.3 5.2 
M4, m2cm–3 1.4  0.3 2.0 2.0 1.0 
M5, m2cm–3 0,05  0.03 0.9 0.8 0.8 
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We therefore the first discuss the data processed 
via the moment model, which does not require an a 
priori form for (r). The moments obtained for J = 4 
are given in the first column of Table 2 for the first 
layer of the sounding path. The backscattering  and 
extinction  coefficients calculated using Eq. (5) are 
presented in Fig. 1. The extinction coefficient has a 
maximum in the vicinity of  = 700 nm, while the 
backscattering coefficient (i) decreases monotoni-
cally with wavelength. 
 

 
 
Fig. 1. Spectral behavior of the backscattering 
coefficient (a) and extintion coefficient (b), cal-
culated using moment (solid), parametric (dot-
ted), parametric moment (dashed ), and ana-
lytical parametric (dash-dot) models for the 
nearest atmospheric layer z = 0.75 to 0.9 km. The 
uncertainties of the model are shown in the figure. 
The dash-dot and dotted lines coincide for . 

 

Computer simulations of the error obtained with 
the moment model and reduction technique have shown 
that the errors are overestimated compared to those 
obtained from statistical sampling. Thus, for example, 
one obtains sensitivity values M = 64.0,  = 3.5, 
 = 33, using linear reduction, while statistical sam-
pling gives m = 1.6 – 2,  = 9 – 1,  = 1 – 1.3 
for  = 10–20%. It is clear that the backscattering 
coefficients are determined somewhat more accurately 
than the extinction coefficients, and the reconstruction 
uncertainty for the optical characteristics is smaller than 
that for Mj+1. This conclusion is confirmed by experi-
ments in the field (see Table 1), for which the sensi-
tivity values are M = 58,  = 1.1, and  = 5.5. 

Relative errors of 1 measurements depend on the 
wavelength 1 and sounding distance. Is seen from 
Table 1, the lowest-accuracy lidar return measure-
ments are at 1 = 1064 nm; errors at the other 
wavelengths are lower, and approximately the same. 
This level of uncertainty (see Table 1) does not pro-
vide one with satisfactory estimates of the -function 
distribution parameters ,r  lgN, . For example, data 
obtained using the analytical parametric model, with 
experimental errors, gave r = 20 ± .07, 
lgN = 3.0  8,  = 20 ± 50 for the nearest atmos-
pheric layer. The reconstruction errors in this scheme 
rapidly increase with sounding distance. This means 
that the experimental data do not carry enough in-
formation about the desired parameters, and as a 
consequence the use of parametric models becomes 
problematic with no additional assumptions involved. 

On the other hand, there is presently an enormous 
amount of data available on the properties of the most 
typical aerosols. The use of such data in the inversion 
scheme allows one to supplement the definition of the 
problem. For example, we processed the experimental 
data assuming that the aerosol is a random sample of the 
accumulative fraction of urban aerosol, whose micro-
structure is described by a -function distribution with 

parameters7 r
–

0= 3 ± 2 m, lgN0 = 1.5 ± 1, 
0 = 5 ± 4. This information can be represented more 
conveniently. Let the vector of aerosol parameters f be 
a random vector whose expectation value E is f = f0, 
f0 = ( 0,r  lgN0, 0). Its correlation operator F is a 
diagonal matrix whose elements are the variances of 

0,r  lgN0 and 0. The use of additional information in 
the data interpretation leads to a two-measurement 
scheme within the framework of the [A, ] model: 
 

 (13) 
 
This scheme was used to process of the field data, 
based on parametric models. It was found that  does 
not depend on the parametric model, being almost 
entirely determined by the additional information. 
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Fig. 2. The range behavior of the -function 
distribution parameters ,r  lgN, restored within 
the framework of the parametric model (1), ana-
lytical parametric (2), and parametric moments 
model (3). Dashed curves show the error margin. 

 
Figure 2 illustrates the dependence of r  and lgN 

on the sensing range when they are reconstructed via 
parametric models. The results do not differ by more 
than 10%, in spite of the fact that the models are 
constructed using different approximations. This 
demonstrates that a priori specification of the class of 
size-distribution functions and additional information 
enforce quite rigorous constraints. The moments of the 
size-distribution function in Table 2 confirm this 
statement. These moments, calculated using ,r  lgN 
and  reconstructed via parametric models, are prac-
tically identical. 

At the same time, the moment calculated on the 
basis of the moment model differ from those obtained 
using parametric models. However, it should be noted 
that the difference between aerosol mass density 
values, which is determined by M3, does not exceed 6 
per cent among all the models used. 

The (1) and (1) values recovered within the 
framework of parametric models differ by at most 15%, 
while they may differ -from those calculated using the 
moments model by 40% (see Fig. 1). This also bears 
out the conclusion that a priori determination of the 
class of size-distribution functions can influence the 
final results more strongly than the type of the model 
used. At the same time it is seen from the data presented 
here that spectral behavior of the optical characteristics 
obtained with either the moment or parametric models is 
qualitatively the same, regardless of the model used. 
Note that the parametric models are inherently aimed at 
the Interpretation of data in terms of ,r  lgN and , 
being thus optimal, in the sense of minimum uncer-
tainties, for this purpose. The use of additional infor-
mation in the moment model also reduces the uncer-
tainties to be achieved (see Table 2 and Fig. 1). 

Investigation of the validity of this models has 
shown that the use of additional information in all the 

models considered enables one to achieve a reliability 
() between 0.98 and 0.99. This means that based on 
the experimental data and a priori information, one 
can not reliably reject from any of the models. It is 
interesting, finally, to investigate the influence of m 
on the data processing results. To illustrate this, we 
have processed experimental data within a parametric 
model with m = 1.33 – i0, the additional informa-
tion being the same as before. As a result, we obtained 
for the nearest atmospheric layer the values 

r
–

 = 0.50 ± 0.07 m, IgN = 2.0 + 0.2,  = 4.8 ± 3.7.
The reliability parameter decreased from 0.98 to .0.85. 
The meteorological conditions of the experiment in-
dicate that the value of m = 1.5 – i  0 is more likely 
than m = 1.3 – i  0, which probably accounts for 
the decrease in reliability. 
 

Conclusion 
 

Field experiments on four-wavelength sensing of 
atmospheric aerosols have been carried out using the 
first, second and third harmonics of a Nd3+YAG laser 
and ruby laser. 

The experimental data enable one to reconstruct 
the spectral behavior of the extinction and backscat-
tering coefficients of an aerosol haze. The spectra 
obtained using moment and parametric models in the 
data processing procedure are similar. 

A priori assumptions about the range of aerosol 
parameter variations enable one to interpret experi-
mental data of modest accuracy. The a priori speci-
fication of (r) in parametric models sets stringent 
limits on lidar data interpretation. For that reason the 
moment model, in wich the form of (r) is not 
specified a priori, is preferable when such assumptions 
cannot be made. 

The reduction technique can be considered an ef-
ficient algorithm for assessing the uncertainties of pa-
rameter recovery. Numerical simulations show that the 
technique provides an upper limit on the uncertainties In 
the moments obtained from laser sensing data. 

As far as the validity of the models examined is 
concerned, they are indistinguishable within the context 
of the experimental studies discussed in this paper. 

The analytical parametric, parametric moment, 
and moment models require fewer computations than 
the parametric ones. Therefore these models can be 
recommended for practical use in lidar data processing. 
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