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A theoretical study of the statistical properties of frequency-diversity waves 
propagating through discrete scatterers is reported. Variances and correlation functions 
of Gaussian beam log-amplitude and phase fluctuations are calculated by the smooth 
perturbation method. Within the framework of the continuous medium approximation, it 
is shown that the specular reflection of a beam whose initial size is smaller than the 
characteristic scale of scatterers increases the phase and log-amplitude fluctuations and 
improves their frequency correlation. The domain where these effects are found to occur 
is determined by the scatterer radius. 

 
 

Multi-pass propagation through the same random 
medium inhomogeneities has received much attention 
due to recent advances in optical detection and ranging. 
A number of relevant references can be found in the 
review paper1 and monograph 2. In spite of the fact that 
optical wave fluctuations caused by discrete scatterers 
have been thoroughly considered (see Ref. 3-5), the 
statistical properties of fluctuations of waves reflected 
from remote objects have so far not been investigated. It 
is the aim of this paper to examine their behavior in a 
scattering atmosphere. In particular the log-amplitude 
and phase fluctuation correlation functions for fre-
quency-diversity optical waves reflected from a specular 
plane are calculated. The variances and cross-correlation 
of the fluctuations are determined by the smooth per-
turbation method 6,7. This study is performed within the 
framework of the continuous medium model8,9, i.e., the 
medium is characterized by the effective statistics of 
dielectric permittivity fluctuations. Such atmospheric 
states as rain, hail, snow and mist can be adequately 
described by this model. 

Consider two optical beams with carrier frequencies 
1 and 2 respectively, propagating along the same path. 
The boundary conditions for the beams take the form 
 

 (1) 
 

where U0j is the field amplitude at the center of the 
output aperture and a0j is the effective initial radius of 
the relevant beam (j = 1, 2). 

The beams are assumed to originate at the plane 
x = 0, to travelalong the x-axis through a randomly 
inhomogeneous medium with a thickness L, and to be 
reflected from an infinite specular plane. In the 
process, the beam return path runs through the same 
layer and terminates at a receiver located in the plane 

x = 0. The medium is supposed to consist of a large 
number of discrete scatterers whose characteristic 
radius a is larger than the optical wavelength, and 
whose mean density is m0. It has been shown 8,9, .that 
in that case, the first two moments of the effective 
permittivity fluctuations are 
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is the optical wave number, j is the wavelength in 
vacuum and J1 is the first-order Bessel function. 

The correlation functions of the log-amplitude 
and phase fluctuations can be written in terms of the 
complex phase correlation function as follows: 
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Here 1(, k) is the complex phase of the optical wave 
with wavelength  and subscript 1 indicates that  is 
determined to first order of the smooth perturbation 
method. In analogy with Ref. 7, the complex phase 
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correlation functions for Gaussian collimated beams 
defined by Eq. (1), propagating along a sounding path 
with small optical depths  of the scattering layer, 
 = m0a

2L < 1, take the form 
 

= 
 

 

 

 

+
 

 

 
 

 
 

 (4) 
 

 

 

 

 
 

 
 

 
 

 
 

Here L is the distance from the transmitting aperture 
to the retroreflector: 
 

 

 
 

Equations (4) were derived under the assumption that 
the effective dielectric permittivity fluctuations are 
given by Eqs. (2). The analysis of Eqs. (3)–(4) shows 
that the correlation functions depend on three di-
mensionless parameters: the transmitter aperture 
Fresnel number 0 = k 2

0a /L, the beam path con-

figuration parameter /à, and the parameter 

d = L/(ka2), which indicates the zone (near or far) in 
which the transmitter is located. 

Consider reflection in the backward direction, i.e. 
 = 0; for the limiting case in which the field is a 
plane wave (0 = ) and d p 1. These conditions are 
valid, for example, for rain (a  103 m, with a typical 
value of k  107 m1), when L p ka2 for paths longer 
than 100m. The variance of the log-amplitude fluc-
tuations takes the form 
 

 (5) 
 

This result is seen to be similar to the case where the 
plane wave travels along a one way path10 of length L, 
i.e. 2 2

0 02 ( ) ( ).ow           Equations (5) shows 

that the fluctuations of a plane wave propagating along 
a one-way path through a discrete scattering medium do 
not increase, unlike the situation for turbulent, at-
mospheric conditions1,2,7. Spherical wave propagation 
(0 = 0) can be treated similarly, and we have 
 

2 2 2
0 0 0( 0) 2 4 ( 0)owm a L        g   (6) 

 

that is the log-amplitude fluctuations grow large if the 
wave is reflected from a plane mirror in a random 
inhomogeneous medium. It should be noted that for a 
one-way path10 2 2

0 0( ) ( 0),ow ow          while for 

the round-trip path 2 2
0 0( ) ( 0).          The 

phase fluctuation of the plane and spherical waves 
behave in the following way: in the near zone 
(d b 1),they are small compared to 2,  while in the 

far zone (d p 1), 2 2
0 0( ) ( ).S   g  This relationship 

can be explained by the fact that for d b 1, the 
scatterer casts a distinct geometric shadow on the 
receiver, while in the far zone, diffraction patterns are 
found to occur. It can readily be seen that in the far 
zone all fluctuation statistical characteristics of optical 
waves are mutually consistent. 
 

 
 

FIG. 1. 
 

Figure 1 depicts the variances of the log-amplitude 
and phase fluctuations along the axis of a collimated 
beam as a function of the diffraction size of the trans-
mitting aperture for the case of reflection from an in-
finite plane mirror in a monodisperse scattering medium. 
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2
0( ) /s      and 2

0( ) /      are represented by 

solid and dashed curves respectively; curve 1 correspond 
to d = 1 and 2 to d = 100. Comparison with similar 
results obtained for a one-way path10 enable us to 
summarize the peculiarities of the case of under con-
sideration: i) curves for  and  become asymmetrical 
with respect to the point 0 = 1; ii) the differences 
between the variances of the log-amplitude and phase 
fluctuations of the optical beam are smaller than for a 
one-way path; iii) a significant increase in beam fluc-
tuations for small transmitting apertures (L  10ka2) 
appears. 

It should be added that for a plane wave reflected 
from an infinite plane mirror in a discrete scattering 
medium the fluctuations do not increase (see Eq. (5)). 
However, they are not amplified for spherical waves 
(see Eq. (6)). This can be clarified by nothing that the 
shadow pattern on the receiver caused by discrete 
scatterers is a set of individual shadows because for the 
plane wave the shadows from forward and backward 
propagation coincide. In the case of spherical waves, 
each scatterer casts two shadows. 

Considered below are the main differences between 
Gaussian beam parameter fluctuations in a discrete 
scattering medium and those in a turbulent atmos-
phere11. These differences are due to the fact that the 
correlation length L of permittivity fluctuations in a 
scattering atmosphere is less than the radius of the first 
Fresnel zone ( 2 1/2( / )L a L kf n ), while in a turbulent 
atmosphere it is greater than the latter 2,11, 

1/2
0 ( / ) ,TL L L kf .  where L0 is the e external turbu-

lence scale. It follows from the foregoing discussion that 
for 1/2( / )TL L k.  the permittivity fluctuations are 
completely correlated in the scattering volume of im-
portance for beam propagation, while for 

1/2( / ) ,SL L kn  the volume can be split into a set of 
separate uncorrelated domains. 

For frequency-diversity plane waves and  = 0, 
the log-amplitude and phase fluctuation correlation 
functions are of the form 
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Íåãå k = 2k1k2/(k1 + k2) is the wave number cor-
responding to the average wavelength in vacuum, and 
 = (k1 – k2)/(k1 + k2) = (2 – 1)/(2 + 1) is 
the relative wave number difference. If  = 0, i.e. 
k1 = k2, then 2

,( , ) .S SB k     The log-amplitude and 

phase fluctuation correlations b,S can be written as 
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For  < d–1 their dependence on the parameter  is of 
the form 
 

 (9) 
 

and for d–1 <  < 1, 
 

 
 

Here  = 21,32. 
Typically, d p 1 for atmospheric routes. This 

results in a fast falloff in bS as a function of , 
practically to zero, since for  > d–1, bS(k, )  0. 
Thus, for round trip paths in a discrete medium the 
frequency correlation interval of plane wave 
log-amplitude and phase fluctuations is found to be 
k  d–1 = ka2/L. This result can be also obtained 
from the following considerations. The angular width 
of the domain important for scattering is of order /a; 
hence, the path difference caused by scattering is of 
order L2/a2, and the relevant time delay is ap-
proximately L2/ca2. The frequency bandwidth is 
connected with the time delay by the uncertainty 
relation; thus, k  ka2/L = d–1. 
 

 
 

FIG. 2. 
 

Figure 2 illustrates the calculated behavior of the 
normalized correlation function for frequency-diversity 
plane waves travelling through a monodisperse scat-
tering atmosphere (d = 5). Here solid and dashed 
curves 1 and 2 depict the log-amplitude and phase 
statistics respectively. The log-amplitude and phase 
fluctuation correlation functions for a round-trip path 
and a one-way path of length 2L are seen to be the same. 

The foregoing treatment was applied to plane 
waves. Similar calculations can readily be carried out for 
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spherical waves. The dashed curves in Fig. 2 show the 
normalized log-amplitude (1) and phase (2) fluctuation 
correlation functions of the frequency-diversity spherical 
waves (d = 5). Obviously, the frequency correlation in 
the spherical wave is greater than that for the plane 
wave. The asymptotic equations for the spherical wave 
correlation function bS(k, ) are in good agreement 
with numerical calculations, and give the same results as 
Eqs. (9) at  = 0.53. 

It has thus been shown that the log-amplitude and 
phase fluctuation frequency correlations for fre-
quency-diversity waves travelling over a round-trip path 
are higher than those for a one way route of length 2L. 
For reflected spherical waves the degree of frequency 
correlation is the same as that for a one-way trip of 
length L. It might be said that for spherical waves the 
frequency correlation is improved over a round-trip 
path. The degree of correlation of a finite Gaussian beam 
lies somewhere between the limiting cases of plane and 
spherical waves. Numerical estimates predict that a 
round-trip through the same inhomogeneities in a dis-
crete scattering medium results in better frequency 
correlation for beams initial size a0 < a. 

It is known7 that the statistical characteristics of a 
reflected wave travelling in an inhomogeneous medium 
strongly depend on the path configuration. The same is 
true of spherical wave propagation in a discrete scat-
tering medium. Here the propagation geometry is de-
fined by the distance p from the transmitter to the 
receiver. The correlation is greatest for backward re-
flection, i.e., for  = 0. As  increases, the correlation 
decreases monotonically to a limiting value of 
0,5 ÂS(k, ). The characteristic scale for significant 
variations of ÂS(k, ) is the scatterer radius a. It 
should be noted that for the plane waves no dependence 
of the optical radiation statistical characteristics on the 
path configuration was found. 

Thus in a discrete scattering medium, specular re-
flections of beams whose initial size is smaller than the 
scatterer characteristic size lead to amplification of the 
log-amplitude and phase fluctuations, as well as to their 
enhanced frequency correlation. Both effects are ob-
served in the immediate vicinity of the beam axis. The 
transverse size of this neighborhood is determined by the 
scatterer characteristic radius. 

The above considerations provide the basis for a 
new method of measuring the atmospheric turbulence 
inner scale I0 pertaining to precipitation conditions. It 
should be noted that conventional methods for deter-
mining the turbulence inner scale based on the statistical 
characteristics of optical beam fluctuations cannot be 
used for a turbid atmosphere6,11. The proposed approach 
to the estimation of I0 relies on measurements of the 
log-amplitude fluctuation frequency correlation. It has 
been shown in an earlier paper7 that for the fre-
quency-diversity waves the normalized correlation 
function of the log-amplitude fluctuations only depends 
on one meteorological parameter, namely the turbulence 
inner scale. In the realm of weak fluctuations, atmos-
pheric turbulence and discrete scatterers additively  

affect optical wave fluctuations8. If  > k, the 
log-amplitude fluctuation correlation of fre-
quency-diversity waves travelling through a discrete 
scattering medium is negligible, according to Eq. (9). 
For the same initial values of the diffraction parameter 
at 1 and 2, the difference between the variance of the 
log-amplitude fluctuations of the two beams is deter-
mined by the variances of the fluctuations for waves 
propagating through a turbulent atmospheric layer. 
Thus, for the frequency-diversity Gaussian beams, the 
ratio of the log-amplitude fluctuation correlation func-
tion to the variance difference depends solely on the 
meteorological parameter I0, both for clear and turbid 
atmospheric conditions. The effect of the scatterer on the 
optical log-amplitude fluctuations can be eliminated, 
and there is consequently a way to measure the at-
mospheric turbulence inner scale without any distortion 
due to discrete scatterers. 

The potential of our method can be illustrated by 
the following fact. The measured intensity-fluctuation 
correlation function for frequency-diversity waves 
( = 0,18) were reported in Ref. 12 and 13. The ex-
perimental data for the weak turbulence regime were 
processed using the proposed procedure to yield an 
average turbulence inner scale of 0.5 mm. The mete-
orological data given in Refs. 12 and 13 lead to 
I0 = 0.40.9 mm. 

Thus, the results obtained by our method for op-
tical measurement of the turbulence inner scale are in 
good agreement with the available meteorological data. 
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