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A new variational interpolation method is reported. The proposed procedure is based 
on the extension of solutions of certain unperturbed problems to a number of cases where 
perturbation theory is not valid. The algorithm adopted does not have to be more 
complicated that that of the first-order perturbation theory. To illustrate the method, 
examples of solutions of wave and kinetic models for radiative transfer are considered. 

 
 

The interpretation of atmospheric sounding data 
is complicated by variability of the state of the me-
dium. It implies that a great number of 
time-consuming computations have to be performed 
for different atmospheric conditions. Ways of mini-
mizing the calculations involved have received a great 
deal of attention. Thus, for example, perturbation 
theory enables one to reduce the number of compu-
tations by applying the solution of the unperturbed 
problem to the approximation of solutions of per-
turbed problems. 

This paper discusses a new method of interpreting 
unperturbed solutions to certain problems that has a 
wider range of aplicability than perturbation theory. 
The proposed algorithm does not appear to be more 
complicated than first-order perturbation theory. 

Let us calculate the functional 
 

J = (D, ) 
 

of the solution to the linear inhomogeneous equation 
 

L = S 
 

for a set of operators L  L and fixed functions D and 
S. If the domain of interest in the operator space L is 
sufficiently small the solution of the problem may be 
given in terms of perturbation theory: the basic op-
erator is chosen to be L0  L, the basic solution 0 and 
the corresponding conjugate function 0

  are found, 
and the conventional perturbation expansion series is 
constructed: Refs. 1, 2 
 

 
 

Íåãå V0 = L – L0, 
1

0 0G = L  is the Green’s function 
for the unperturbed problem. The concept underlying 
the algorithm suggested is as follows. Unless the 
domain L is sufficiently small for perturbation theory to 
be used, a few "basis" operators L1, L2,  from L are to 
be chosen, and the problem is then solved for each of 
them (i.e., i and i

  are determined, i = 1, 2, ). 

Linear combinations of the basis functions 
 

 
 

are used in the variational problem J = 0, where1 
 

 
 

The result is 
 

 
 

with 
 

 (1) 
 

The stationary condition of the form 
 

 
 

results in the equations for the expansion coefficients 

iC  and Ci: 
 

 
 

 
 

For the case of two basis operators, we have 
 

 
 

 
 

Introducing the notation Vi = L – Li and using the 
relation 
 

 
 
the coefficient ratios may be written as 
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 (2) 

 
 

It is to be noted that the coefficients C+ and C coincide 
when the operators V1 and V2 are symmetric 
((Vi)kl = ((Vi)lk). 

Three important features of the proposed algo-
rithm should be pointed out. First, in a sense, it solves 
the problem of interpolating the solution using two or 
more given unperturbed solutions in the domain L, 
whereas conventional perturbation theory is more an 
extrapolation procedure (i.e., attempts are made to 
extend the known solution for "the point" L0 to a 
domain of L). Second, the solution obtained is not 
coincident with J1(J2) at "points" L = L1(L2) but in 
the neighborhoods of these operators, it also gives the 
same results as does perturbation theory near L1(L2). 
Actually, for V1 0 we obtain 
 

2 1/ 0,C C      2 1/ 0,C C    and 
 

 
 

Third, the calculations of the relevant matrix elements 
(Vi)kl are no more complicated than those of first-order 
perturbation theory, and are considerably simpler 
them the second-order matrix elements. 

We now consider the application of this method 
to kinetic and wave models of radiative transfer. A 
kinetic model describes the radiation field by the 
differential photon flux density ( , , ),r  


 which 

satisfies the integro-differential equation 
 

 
 

 
 

where t(r, ) is the total molecular absorption and 
scattering cross section per unit length, s is the 
scattering coefficient, g is the scattering phase func-
tion, S(r, , ) is the differential photon source 
density,  is the direction of photon travel,  is the 
wavelength. The corresponding adjoint equation reads 
 

 
 

 
 

As a numerical example, the simplest problem 
(call it problem A) of particle-transfer in a homoge-
neous medium for the case of no scattering will be 
considered. At the coordinate origin there is a point 
source emitting particles in the positive z-direction. A 
detector records the number of particles at the plane 
z = t. It is sufficient to use the reduced phase space 
{z}, S(x) = (z), D = (z – t). The operator L de-
pends only on the interaction cross-section : 
 

 
 

The basis and conjugate functions are defined as 
 

 
 

The solution set is to be constructed in the neighborhood 
of the basis operator L0 = L(0), i.e. J = J() is to be 
found. Perturbation theory yields in this case 
 

 
 

The variational perturbation method requires that 
at least two basis operators L1 = L(1) and 
L2 = L(2) be chosen, so that 1 < 0 < 2 and 
(2 – 0) t = (0 – 1) t  a. Let 0t = . Then 
the matrix elements can be expressed as 
 

 
 

 
 

 
 

 
 

Fig. 1. Problem A: ___ – exact solution;    ,----- 
– first and second-order perturbation theory solu-
tions, respectively; -    variational interpolation 
method for a = 0.5, 1, 1.5, 2, 2.5;  – basic points. 

 
Hence 
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The calculated results are shown in Fig. 1. The 
variational method is seen to have a wider range of 
validity than perturbation theory; e.g. , for a = 1.5 a 
change of an order of magnitude greater or smaller in 
the functional value is well reproduced, whereas 
perturbation theory yields reasonable agreement only 
for variations within 30–40% of the functional value. 
At larger values of a, the solution tends to give smaller 
values around  = 0. 

In a wave model, the radiation is described by a 
function v that obeys the wave equation. The discussion 
be confined to the parabolic equation for the wave 
amplitude3 
 

 
 

 (3) 
 

Here  = (x2 + y2)1/2, n(z, ) is the index of re-
fraction, (z, ) is the absorption coefficient, k is 
the wave number. Of practical interest is the 
situation where neither diffraction n or absorption 
processes can be neglected. For the case where 
2i  k(n(z, ) – n0 + i(z, )/k) is independent of 
p, equation (3), subject to the boundary condition 
v(0, ) = [22]–1 exp(–2/22), is solvable analyti-
cally, and we have 
 

 
 

 (4) 
 

Let us now find the radiation field amplitude in the 
plane z = t. Then D(z) = (z – t)( — 0) and 
J = v(t, 0). The coefficient  is taken to be 
(, z) = (5–4 exp (–2/22)) k–1. The above 
problem will be called problem B. For / 1,z   n  

perturbation theory appears to be valid. The solution 
of equation (3) for  = 1 = const is chosen as the 
basis solution. The conjugate function has the form 
 

 
 

 (5) 
 

Perturbation theory fails for t  1. We now 
apply the variational interpolation method to 
problem B. Choose two basis solutions correspond to 
2 = 1/k, 1 = 5/k. In that case 2    1. To 
calculate the wave amplitude v for a given  we 
utilize relations (1) and (2) and basis solutions (4) 
and (5). A numerical integration over z is carried out 
to find the matrix elements (Vi)kl. The calculated 
results are shown in Fig. 2. The finite difference 
method is used to obtain the exact solution of Eq. (3). 
Note that for the situations considered, the basis 
solutions differ by more than an order of magnitude. 
Perturbation theory fails to describe this variation of 
the function v(z, ) as expected, whereas the varia-
tional interpolation method results in values that are 
practically the same as those provided by the exact 
solution. 
 

 
 

Fig. 2. Problem B: ___ - exact solution; ----- – 
first-order perturbation theory solution;      – 
variational interpolation method. 1 – Re V;  
2 – Im V; a) t = 2.4; b) t = 2.8. 
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