
A.P. Ivanov and A.I. Kolesnik Vol. 2,  No. 2 /February  1989/ Atmos. Oceanic Opt.  113 
 

 

SIGNAL-ÒÎ-NOISE RATIO OF PULSED OPTICAL SOUNDING  
OF TARGETS THROUGH A SCATTERING MEDIUM 

 
 

A.P. Ivanov and A.I. Kolesnik 
 
 

Institute of Physics, Academy of Sciences of Belorussian SSR, Minsk 
Received November 14, 1988 

 
 

This paper presents a theoretical analysis of the signal-to-noise ratio (SNR) for 
pulsed optical sounding of targets in a turbid medium as a function of the primary optical 
parameters and type of noise, external background intensity, and the parameters of the 
transmitter-receiver. The calculations were made using the small-angle diffusion ap-
proximation and taking into account temporal distortions of the pulse shape in a scat-
tering medium. Also the conditions are determined under which different types of noise 
become significant in forming the signal-to-noise ratio  as a function of range. It is shown 
that in the case of typical values of the sounding pulse power the decrease of  with 
increase in the range is caused by transmission losses stet significant increase of the initial 
pulse energy of the sounding pulse the decrease of  is due to a decrease in the recorded 
contrast. In the former case the value of  strongly depends on the probability of photon 
survival, while in the latter it depends on the assymetry of the scattering phase function 
in the forward direction. Simple expressions are derived for estimating the value of  in 
limiting cases of short and long distances. 

 
 

The signal-to-noise ratio  is one of the basic 
parameters of a sounding system which characterizes 
its efficiency of operation, and it has been widely 
analyzed in the literature (see, e.g., Refs. 1–5). 
However, practical calculations require, as a rule, 
additional information on the values entering into the 
general relationships for . In the present paper we 
present a theoretical analysis of  for pulsed optical 
sensing of targets in turbid media as a function of the 
optical properties of the medium, the parameters of the 
transmitter-receiver, and the external background level. 

The idea of optical ranging is quite simple. A short 
light pulse is sent into a medium. A receiver located near 
the transmitter collects and records the intensity of light 
scattered by the medium. This backscattered light is 
frequently called the backscattering noise (BSN). Ra-
diation reflected from a target at a certain range pro-
duces a peak in the BSN envelope. The position of the 
peak allows one to determine the range to the target. But 
if the target is too far from the sounding device, it 
becomes not so simple to detect the signal from it due to 
the influence of noise. 

Let the photoelectronic recording system be a 
direct detection system operating in the analog regime. 
Since the post-detector electronics can not increase the 
SNR1, we shall calculate the maximum  values which 
can be achieved at the photocathode assuming that 
noise in the post-detector electronics are much lower. 
A measure of the photodetector noise can be obtained 
from the rms deviation of the number of photoelec-
trons D  detected during the detector’s rise time 

2
r .t  Here D is the variance of the number of elec-

trons, and tr = 1/f, where f is the frequency 
bandwidth of the recording electronics. Of the variety 
of noise types one can distinguish four groups1,2. 

The first group includes the noise sources which 
do not depend on the number of photocounts detected, 
or dark current noise. In this case D1 = ndtr, where nd 
is the counting rate of the dark current photoelectrons. 
In the other words, the variance of the dark noise is 
equal to the number of dark noise photocounts re-
corded during the rise time tr. 

The second group of noise sources involves those 
types of noise whose variance is proportional to the 
number of photocounts recorded during the rise time 
tr, or D2 = nphtr, where nph is the mean number 
of electrons produced by the photons incident on the 
cathode per unite time. Shot noise is an example of 
this kind of noise. It can be approximately assumed 
that this noise obeys Poisson statistics, wherefore 
 = 1. For other statistics  differs from unit. In our 
further analysis of the influence of this type of noise 
on , only shot noise will be taken into account since 
it is as most typical. 

Let us consider now the noise sources appearing in 
the system as a whole, including the light source, the 
scattering medium, and the photodetector. These noise 
terms exist due to, e.g., fine temporal structure of light 
pulses, instabilities in optical properties of the medium 
along the sounding path, temporal variability of the 
detector sensitivity and also due to induction. Since 
the behavior of these noise term can be different, the 
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derivation of an expression for 8 must be carried out 
separately for each particular case. To continue our noise 
classification we shall point out limiting conditions 
under which two types of noise are most important. 

Thus the third group of noise terms includes the 
high frequency noise observed when the rise time of 
the predetector part of the system is much smaller than 
that of the receiver (tpds ` tr). Here tpds is the 
typical period of variation of the response of the 
system, which results in fluctuations in the number of 
recorded photons. It should be noted that not all the 
fluctuations are observed, due to the finite rise time of 
a detector. It can be shown that the variance of this 
type of noise can be written as follows 

2 2
3 rhf pds ph ,D K t n t    where 2 2 1/2

hf hf hf( / )K n n  is the 

high frequency coefficient of variation of the number of 
photoelectrons, and 2

hfn  is the variance of the high 
frequency fluctuations of the photoelectrons recorded 
during the rise time tr. 

The fourth group of noise terms include the low 
frequency noise observed at tpds p tr. In his case the 
variance 2 2 2

4 rlf ph ,D K n t   where Klf is the low frequency 

coefficient of variation of the number of photoelectrons. 
As was already mentioned, information about 

target in the medium is extracted by comparing two 
signals at nearby moments, i.e. the BSN signal and the 
signal from the target. In this situation, the variance of 
the i-th noise terms is given by BSN t

i i i ,D D D   where 
BSN
iD  and t

iD  are the variances corresponding to the 
above signals. 

For statistically independent noise terms one ob-
tains that 
 

 
 

 (1) 
 

where ne is the number of electrons produced by the 
photons arriving from the target per second; 
 

 
 

are the signal-to-noise ratios due to corresponding 
noise terms. 

It can be shown that 
 

 (2) 
 

 (3) 
 

 (4) 
 

 (5) 
 

where d/ 2 ;e i   N is the total number of photo 

recorded; 
 

 (6) 
 
is the energetic parameter of the transmitter receiver; 
 

 (7) 
 
is the contrast of a signal from the target at the 
photodetector; 
 

 (8) 
 
is the coefficient of energy transmission; W is the 
energy of the sounding pulse; Sr and r are the area and 
solid angle of the receiver respectively; id and S are 
the dark current and spectral sensitivity of the 
photodetector; e is the electron charge; BSN,B  S,max,B  

BCDB  are the brightness of backscatter, of the target at 
signal maximum, and of the external background, 
respectively, averaged over the time interval tr (the 
detector rise time), the receiver area Sr and the re-
ceiving angle Wr; G is a coefficient characterizing the 
decrease of the BSN level by at the moment of maximum 
signal from the target due to shadowing of the sounding 
beam (it can be shown that G is about 0.7 for the case of 
an infinite screen and tends to unity for small screens). 

Before analyzing the behavior of (), we will 
consider some methodological questions. 

A general description of the expressions for ÂBSN 
and ÂS,max entering into Eq. (7) and Eq. (8) can be 
found, in Ref. 6. Formulas for ÂBSN have been derived 
in Ref. 7 and for ÂS in Ref. 8 using the results in 
Ref. 9 and the reciprocity theorem (Ref. 10). As has 
been shown in Ref. 6, the temporal behavior of a 
signal reflected from a target BS can be described by 
the sum of three gamma-distributions, designated as 
R1(t), 21R2(t) and 2

3( ).R t  The physical meaning of 
these three terms are as follows. The first term describes 
the light directly transmitted over the path transmit-
ter-target-receiver, the second term describes that por-
tion of the light scattered by the medium on its way to 
the target which upon reflection by the target then 
reaches the receiver directly, as well as that portion of 
light which reaches target directly and is then scattered 
on its way to the receiver, and the third term describes 
the portion of light scattered on both shoulders of the 
path. Analysis shows that the maximum of the function 
21R2(t) is always lower than the maxima of the other 
two functions, and that at  > 5 2

1 3,max 1,max.R R   

Thus in the range  > 5, which is of practical im-
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portance for pulsed ranging, we shall describe the 
signal reflected from a target by the term 2

1 3,max.R  

We can begin our analysis by noting that the 
influence of the characteristics of the receiver and 
transmitter parameters which enter into the energetic 
constant A on  is quite obvious from expressions (2) 
and (3). These expressions also involve the parameter 
tr, whose increase (in other words, the decrease of the 
frequency transmission band of the photodetector) 
results in an increase, to a certain extent, in the value 
of , due to the concomitant decrease in the dark and 
shot noise. But further increase of tr lowers the value 
of the contrast. 

Therefore there exists a certain optimal value of 
tr which provides for maximum signal-to-noise ratio. 
Calculations show that under the condition 
 

 (9) 
 
the value  reaches its extremum. Here tm is the 
characteristic response time of the medium to -pulse 
initiation for the case when the light is first scattered 
by the medium, is then reflected by the target, and is 
then collected by the receiver. This response time is 
due to the differences in the path lengths which the 
photons travel from the transmitter to the receiver via 
the target. The finitude of tm is due to the spread of 
times of passage of the photons in the medium, 

wherefore 1/2 / ,m mt D c    where Dm is the variance 
of the photon paths and c is the velocity of light. As 
follows from expression (9) in order to obtain the 
highest value of the signal-to-noise ratio one has to 
record all the energy arriving from the target at the 
receiver aperture Sr within the receiving solid angle r. 
Using the results in Ref. 11 one can calculate tm for 
media with different  and other optical properties 
such as  and 2  and for different target radii R. Here 
 = / is the probability of photon survival,  is the 
scattering coefficient, 
 

 
 

is the mean square scattering angle, and x() is the 
scattering phase function. Table 1 presents the values 

m mD c t    calculated for R = 15 cm and R   
for different situations. It is seen from the table that the 
duration of a light pulse reflected from a target increases 
with the increase of any of the parameters ,  or 2,  
which is obvious from a physical point of view. 

Additional calculated results were obtained for 
cases satisfying condition (9). However, we should 
like to note that violation of the relationship 
tr = tm does not have any essential effect on the 
value of . 

 
Table 1. 

 

 
 

Since in our case the detector records all the light 
energy arriving from a target within Sr and r, the 
value of S,max,B  which enters into formulas (7) and (8) 

is found by solution of a similar problem with a 
continuous light source emitting the light flux F, i.e. 
 

 

where ÂS,cont is the brightness of the target, illumi-
nated by continuous wave radiation, as seen by the 
receiver. This value has been calculated in Ref. 8 using 
the small-angle diffusion approximation. 

Let us assume that the optical axes of the receiver 
and transmitter coincide and are perpendicular to the 
screen, and that the viewing angles of the transmitter 
and receiver are equal to 0.5°. 
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Fig. 1. Data illustrating the influence of dif-
ferent types of noise on . Here the value of A is 
3.5 m2 (curves 1); 3.5104 m2 (curves 2); 
3.5108 m2 (curves 4); and A   (curves 5). 

 

As a rule, the contributions of different types of 
noise to the total noise level are not equivalent and only 
one of them determines the resulting value of . Below, 
on the basis of the data presented in Fig. 1, we carry out 
a qualitative estimation of the conditions under which 
one of the noise terms can dominate over the others. We 
consider a medium for which  = 0.7 and 2  = 0.06. 
An infinite screen is assumed with brightness coefficient 
 = 0.2, Klf = 0.01,  = 0.009 c1/2. The case is con-
sidered of no external background. Since the behavior of 
3() and 4() is similiar, assuming that Khf = Klf and 
taking into account that for high frequency fluctuations 
Ntr p tm, for high light power levels one has 3 p 4 
and  = 4. Therefore here and below for the case of 
unbounded increase of the energy of the light source we 
shall consider only the value  = 4, because, normally, 
only low frequency noise determines the range at which 
a target can be detected. The solid curves in the Figure 
represent the behavior of the resulting  value for dif-
ferent A values. The other curves represent the 1 values. 
In the regions where  = 1 two close curves are plotted, 
from Fig. 1 it is seen that the behavior of the curves 
1() are different. The quantity 1 has the most rapid 
falloff with growth of . The lowest decrease with  is 
observed for 4. This is explained by the fact that 1, 2, 
and 4 are proportional to K, K   and K, respec-

tively, were K and  decrease with increasing optical 
depth. As to the contrast, it remains almost constant in 
the region of small  values, while the energy trans-
mission coefficient rapidly decays. For this reason 4 is 
also constant at small  values, while 4 varies strongly. 

For small values of the energetic parameter A, the 
value of  is determined by the dark noise. For larger 
A values (solid curve 2) first shot noise dominates at 
small optical depths, and then at larger  dark noise 
become more important. Further growth of the 
sounding pulse energy leads to a situation in which the 
resulting function () (solid curves 3, 4) is described 
by 4 in its initial portion, then by 2 in the middle  
range and by 1 in the range of large  values. All this 
can be explained by the fact that energy arriving at the 
receiver from a target decreases with increase of the 
distance to it. The alteration of the roles of the dif-

ferent types of noise explains the growth of the rate of 
falloff of () at larger  values. Solid curve 5 in Fig. 1 
corresponds to A   when  = 4 at any optical 
depth. This curve shows the maximum possible sig-
nal-to-noise ratios achievable for the medium and 
target under consideration. It is pertinent to note that 
in the case of low dark currents (this is the situation 
with  = 0.009 c1/2)  = 1 only if the signal is lower 
than the noise. Since in most cases the probability of 
target detection must be quite high, which is possible 
only if  > 1, in our further discussion the value 1. 

Let us now consider the influence of a screen 
(target) radius, its brightness coefficient , the optical 
properties (, 2 ) of the medium, and the optical 
depth of the path from the transmitter to the screen on 
the values 2 and 4. 

It can be shown that at small distances, when 

BSN S,max,B B  
 

 (11) 
 

where 
BGD
2  and 2 are signal-to-noise ratios with ex-

ternal background light and without it, respectively. If 
the screen size is much smaller than the sounding beam, 
blurring due to scattering, when the useful signal is 
determined only by direct radiation reflected from the 
screen during the interval tr = ts, then 
 

 (12) 
 

 (13) 
 

These formulas were obtained assuming that direct 
radiation from source is intercepted by the screen. Ex-
pressions (11) to (13) show that  does not depend upon 

the optical characteristics and 
2  of the medium. As 

the contrast diminishes with the growth of  the dif-

ference between 2 and 
BGD
2 becomes stronger. 

In the case when the contribution of scattered 
light to the illumination of the screen is quite high one 
can write down the following expression for 2 based 
on the results in Ref. 8: 
 

 
 

 (14) 
 

and for S,maxB  
 
 

 
 

 (15) 
 

where f = 2r2/4, r is initial radius of the sounding 
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beam, and f2 = 3 2 /6. These formulas show that  

and 2  determine the values 2 and BGD
2 .  Since 4 

coincides to a constant factor 1/Klf with K, expres-
sions (13) and (15) clearly demonstrate the depend-
ence of 4 on all the parameters at low  values. 

A general picture of 2() and 4() is presented in 
Fig. 2. Here solid lines represent  under conditions of 
no background illumination, and dashed lines represent 
6 for the case of a background with 

BGDB  = 0.02 W m–2. In the calculations of 2 the 

parameter A = 3.51012 m2 was used, which, which 
corresponds to W = 1 J, S = 6.5  10–2 A W–1, 
Sr = 0.07 m2, and r = 3.6  10–5sr. Albeit only for 
this A value and small optical depths  = 4, the 
functions 2() are plotted starting at  = 0 in order to 
present a complete picture. In the calculations of 4 we 
used the value Klf = 0.01. Since in this case A  , 
the background radiation does not affect the sig-
nal-to-noise ratio. 

The influence of the screen size on the SNR is il-
lustrated by the curves plotted in Fig. 2a and 2a. It is 
seen from these figures that a screen with R  15 m can 
be considered to be infinite in extent. Since at low 
optical depths the signal power is greater than that of 
the backsground, 2 = BCD

2 .  However, under the con-

ditions under consideration, differences between 2 and 
BCD
2  become noticeable at   10 and increase with 

further increase of , the relative difference between 
them being almost independent of R. 

Figures 2b and 2b represent the function  = f() 
plotted for different values of the screen brightness 
coefficient. In a wide range of  the magnitude of 2 is 
proportional to   since K is practically constant 

(close to unity), while 2 is determined by   which in 

turn is proportional to .  On the other hand, 4 more 

strongly depends on  since 4  K, which decreases 
proportionally to the decrease of the albedo of the 
reflecting screen when the reflected signal is comparable 
with the level of backscattering noise. 

The influence of the optical properties of the 
medium can be also seen from the data presented in 
Figs. 2c and 2c. Thus, for example, the growth of the 
probability of photon survival results in an increase in 
2 and 4 since the fraction of light arriving from the 
screen increases. The same occurs with increase of 
asymmetry of the scattering phase function x() in the 
forward direction (decrease of 2 ). At the same time it 

should be noted that 2  has a greater influence on 4, 
while  has a greater effect on 2. This can be ex-
plained by the fact that 4 is determined by the con-
trast which is mainly determined by the shape of the 
scattering phase function, i.e., by the relationship 
between the fluxes scattered in the forward and 
backward directions. When the shot noise becomes 
more significant, 2 depends significantly on the en-
ergetic parameter, which in turn depends more strongly 

on  than on 2.  
 

 
 

FIG. 2. The functions () and 4() calculated for 
different properties of the screen and medium. 

 

FIGs. 2a and 2a represent the data calculated 
using 2  = 0.06,  = 0.2,  = 0.7, R = 0.15 m 
(curves 1), R = 1.5 m (curves 2), R = 15 m 
(curves 3) and R   (curves 4). 

 
FIGs. 2b and 2b are calculated for R   

2  = 0.06,  = 0.7;  = 0.03, 0.2 and 1 for 
curves 1,2 and 3 respectively  = f() 

 

FIGs. 2c and 2c are for R    = 0.2,  = 0.6, 
2  = 0.06 (curves 1);  = 0.7, 2 = 0.06 

(curves 2);  = 0.8, 2 = 0.06 (curves 3); 

 = 0.7, 2 = 0.03 (curves 4);  = 0.8, 2 = 0.1 
(curves 5). 

 
 

Thus the results obtained in this paper allow one 
to estimate the limiting optical depths at which targets 
can be detected in turbid media. 

The authors express their deep gratitude to that 
I.L. Katsev for fruitful discussions. 
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