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This paper concerns the analysis of optical pulse deformation occurring in the 
atmosphere when such pulses propagate along slant paths in the presence of resonant 
absorption. The analysis of deformation presented in the paper deals with Gaussian pulses 
of different durations. The atmosphere is considered in this study to be an inhomogeneous 
vertically stratified medium. The influence of resonant absorption by H2O vapor on 
optical pulse parameters is demonstrated for ruby laser radiation (at  = 0.69438 m). 
Calculations of the optical wave field have been made using the geometrical optics 
approach. It is shown that the deformations of light pulses can be quite significant, and 
are determined by the direction of propagation, angular beam width, detuning of incident 
radiation from resonance, and the initial pulse duration. 

 
 

INTRODUCTION 
 

The deformation of optical pulses propagating 
along slant paths in a resonantly absorbing atmosphere 
have certain peculiarities caused by variations of the 
medium’s optical properties along the paths. Thus, for 
example, the energy losses of pulses propagating In a 
resonantly absorbing medium are determined by the 
ratio of absorption line width  to the spectral width r 
of the emitted radiation (Ref. 1), and will therefore 
depend on the range along the slant path because of 
narrowing of the absorption with increasing height. A 
shift 'in center frequency of the absorption line 
induced by pressure can also alter the medium 
absorption coefficient2. Specific features of light 
propagation along slant paths are not only manifested 
by changes in the beam’s energy parameters but also by 
significant distortion of the pulse shape resulting from 
atmospheric refraction In the spectral region of 
selective atmospheric absorption3,4. Note that the 
foregoing effects are, as a rule, taken into 
consideration in connection with their Influence on 
local optical properties of the atmosphere2,5, as well as 
in propagation problems involving narrow-band 
radiation3,6 (when r/ ` 1). 

This paper presents an analysis of coherent pulse 
deformation in beams propagating along slant 
atmospheric paths in the presence of resonant 
absorption. We treat the case of Gaussian pulses of 
different durations. 

The atmospheric volume is modeled In this study 
a plane stratified Inhomogeneous medium, the 
parameters of which are varied according to the 
standard statistical models of the atmosphere7. A 

ten-kilometer thick layer of the atmosphere was 
Investigated with water vapor as a resonantly 
absorbing component for radiation at 
 = 0.69438 m. The calculations took into account 
the charge in shape, width and center frequency of the 
absorption line, and in of the water vapor number 
density with the altitude. Similarly, the resonant 
component of the mediums refractive index varied 
according to the Kramers-Kronig relationships3. The 
nonresonant component of the refractive index was 
calculated using the formula8 
 

 
 

where  is the wavelength of radiation in m, P(r) is 
the pressure (torr), and T(r) is the temperature in K. 
Nonresonant losses are trivially taken into account, 
and will be neglected here. 
 

THE PROPAGATION MODEL 
 

The radiation field in a medium can be described 
in the geometrical optics approximation by 
 

 
 

 (1) 
 
where (0, ) is the Fourier transform of slowly 
varying complex amplitude of the field at the 
medium’s input,  is the carrier frequency of the field, 
S0 is the intensity of line absorption per unit number 
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density N(r) of the absorbing gas. The functions 
JmG(, r) and ReG(, r) describe the absorption line 
shape and the resonant component of the refractive 
index of the medium (anomalous dispersion region), 
respectively. The integration in the exponential term 
of Eq. (1) is carried out over the real ray determined 
by the eikonal equation for the wave, 
 

 (2) 
 

The solution of this equation is represented by Snell’s 
law9. 

Equation (1) is valid, taking Eq. (2) into 
account, for band-limited functions (r, ) in a small 
neighborhood of è (the condition of slowly changing 
amplitudes)10, and neglecting diffraction effects. 
Further-more, the following condition11 must be 
satisfied: 
 

 (3) 
 

Note that a weak dependence of the absorption line 
intensity on temperature is neglected in Eq. (1) because, 
e.g., for midlatitudes in summer the temperature change 
occurring in the 10 km atmospheric layer causes only a 
6% change in intensity, while its change due to number 
density variation can exceed 190%. 
 

QUALITATIVE ANALYSIS OF  
THE PROPAGATION PROCESS 

 

Consider some specific features following from 
Eq. (1) for the case of an inhomogeneous resonantly 
absorbing atmosphere. 
 

 
 
FIG. 1. The optical depth along a slant path in 
the atmosphere as a function of frequency , 
calculated for the summer atmospheric model at 
mid-latitudes3; curves 1 are for  = 0, curves 2 are 
for  = 40°; a) shows the data for downward 
propagation and b) for the upward propagation. 

 
The time required for a quasimonochromatic wave 

packet (Sr/ ` 1) to travel along a path of the length 
L is given by (see, for example, Ref. 12) 
 

 (4) 
 

where Vg is the group velocity of the pulse in the 
medium, nr is the resonant part of the medium’s 
refractive index, s is the coordinate along the ray. For 
slant atmospheric paths the spatial position of the rays 
for different spectral components of the pulse will 
depend on the frequency, due to refraction, i.e., 
s = s().Figure 1 presents the computational results for 
the imaginary part of the phase function from Eq. (1), 
which determines the accumulated phase of different 
spectral components of a pulse. As is seen from the 
figure, the time required for a wave packet (strictly 
speaking, its maximum) to travel along a slant path 
depends on both its angle of incidence and the direction 
of propagation. This can be explained by the fact that in 
downward propagation, atmospheric refraction reduces 
the frequency gradient of the function r( , ( )) ( ),n s ds    

caused by the dependence of nr on the frequency 
(nr = nr()), while in the opposite case of upward 
propagation this gradient is increased by the 
atmospheric refraction. 

For of pulses of arbitrary bandwidth, one can 
obtain the asymptotic form of the integral in Eq. (1) 
at large s by using, for example, the method of 
stationary phase13, since the principal contribution 
then comes from points 1 of the phase function where 
 

p 0
0

1 1
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One can see from Figure 2 that the number of 
stationary points is determined by the pulse bandwidth 
Sp and by the frequency offset from resonance. If there 
are two or more stationary points then one can expect 
oscillations in the envelope of pulse intensity I(t, r) 
due to the interference of contributions from different 
stationary points. 
 

 
 

FIG. 2. Asymptotic evaluation of the integral in 
Eq. (5). Here  0( , ) ( ) exp ( )B s A ik         
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It is also seen from Figure 2 that the pulse 
duration in the medium is determined by 
max (, s) – min (, s). Clearly, then, in 
downward propagation the duration of a pulse will be 
reduced for slant paths, compared to the case of a 
vertical path. For upward propagation, the situation is 
the opposite, i.e., the duration of a pulse will be 
greater than for a vertical path. 
 

NUMERICAL RESULTS 
 

The calculation of G(, s), taking into account 
the transformation of the absorption line profile with 
height, has been carried out using Simpson’s rule with 
the Runge correction term14. The integrand of Eq. (1) 
is then replaced by a periodic function with a period 
considerably exceeding that of (0, ). After sampling 
the integrand, the corresponding Fourier series is 
calculated using the fast Fourier transform algorithm. 

The results of calculations illustrating the 
deformation of a coherent Gaussian pulse for different 
frequency offsets from resonance at Sp/(0) = 0.3 are 
presented in Figs. 3a and 4a. For a frequency shift 
 = (0) = 0.1 cm–1, the group velocity of the light 

pulse in the atmospheric ground layer is equal to the 
phase velocity and the shape of the pulse should not be 
distorted. However, at h > 0 for this frequency shift 
from resonance, the medium has normal frequency 
dispersion because of narrowing of the line profile with 
increasing altitude. On the whole, this results in a 
displacement of the pulse maximum toward its trailing 
edge. For  = 0, the medium is characterized by 
anomalous frequency dispersion over the spectral range 
occupied by the components of the pulse within the 
whole atmospheric layer up to 10 km in height. In that 
case the relationship Vg(r) > n0(r)/c is valid and the 
maximum of the pulse is displaced toward its leading 
edge. It should be noted here that Sp/(h) increases with 
increasing altitude, and as a consequence, all the above 
conclusions based on the group velocity are valid only 
qualitatively12. It is readily seen from the figures that 
the pulse shape is very sensitive to the direction of 
propagation. Thus, in the case of downward 
propagation of a pulse through the atmosphere, pulse 
shape distortions are smaller for larger angles of 
incidence, while in the opposite case of upward 
propagation, the distortions are greater for larger 
angles of incidence. 
 

 
 
 
 
 

 
 

 

 

FIG. 3. Deformation of coherent (a) and 
incoherent (b) Gaussian pulses propagating 
along slant atmospheric paths. The calculations 
were made for the summer mid-latitude 
atmospheric model. Here  = –0.1 cm–1, 
 = 30 cm. Curves 1 and 2 are obtained for 
downward propagation at incidence angles 0° 
and 40° respectively; curve 3 represents the data 
for upward propagation at  = 40°; 
I(t, 0)max = 0.767. 

FIG. 4. Deformations of coherent (a) and 
incoherent (b) Gaussian pulses propagating 
along slant atmospheric paths. The calculations 
were made for the summer atmospheric model at 
mid-latitudes. Here  = 0,  = 30 cm. 
Curves 1 and 2 are obtained for downward 
propagation at incidence angles 0 and 40, 
respectively, and curve 3 represents the data for 
upward propagation at  = 40; 
I(t,0)max = 0.767. 
 

The influence of atmospheric turbulence on the 
characteristics of pulsed radiation can be assessed by 
taking into account the following considerations. The 

coherence of an optical wave is reduced by passage 
through a randomly inhomogeneous medium. The 
optical wave can then be represented as a superposition 
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of coherent and noncoherent components15. Results 
presented in Figs. 3b and 4b show that the shape of 
the incoherent component of a pulse is not changed by 
propagation through a randomly inhomogeneous 
medium. In general the influence of atmospheric 
turbulence on the characteristics of a light pulse is 
minor (see, e.g., Ref. 16). 

The calculations show that when Sp/(0) > 1.0, 
the pulse distortions depend only slightly on the 
frequency shift from resonance. This is illustrated by 
the data in Fig. 5 which show the calculated pulse 
shapes for Sp/(0) = 3.0 and  = 0. It is seen from 
this figure that for this case more pronounced 
oscillations are observed in the pulse shape. Since the 
maximum values of intensity I(t, r) are approximately 
the same for the cases presented in Figures 3 to 5, the 
energy losses of a pulse propagating through the 
medium are inversely proportional to the number of 
oscillation peaks in the pulse shape. 
 

 

 

 
 

FIG. 5. Deformation of coherent Gaussian pulses 
propagating along slant atmospheric paths. The 
calculations were made for a summer mid-latitude 
atmospheric model. Here  = 0,  = 3 cm. Curves 
1 and 2 are obtained for downward propagation at 
incidence angles 0° and 40° respectively; curve 3 
represents the data for upward propagation at 
 = 40°; l(t, 0)max = 0.767. 

 

Note that ail the characteristic features of the 
pulse shape transformations revealed in the 
computational data are in good agreement with the 
qualitative analysis in section 3 of this paper. 

Specific features of the deformation of coherent 
optical pulses should be taken into account in the 
propagation of light through the atmosphere, as well 
as when selecting optimal conditions for sensing of the 
gaseous atmospheric constituents along slant paths. 

The authors would like to acknowledge Dr. 
I.P. Lukin for useful discussions. 
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