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The interference pattern from one-dimensional on-axis null beams subject to 
nonstationary thermal blooming in a moving transparent or absorbing medium is 
examined. In the case of optical propagation through a cloudy medium a noninteracting 
subbeam structure is found to form, which can deteriorate the performance of the adaptive 
autofocusing system. It is shown that the thermal blooming effect may result in a beam 
with a single intensity peak if the initial optical power is above a certain critical value. 

 
 

As is known, one of the ways to compensate for 
the nonlinear distortions of a light beam is to profile it, 
i.e., to choose an optimal amplitude profile. The use of 
hypergaussian and hypersleeve beams is very 
promising for this purpose. Such beams experience 
much less nonlinear distortion when propagating 
through both clear (see Refs. 1–5) and cloudy media 
(Refs. 6–8). The efficiency of light energy transport as 
well as the clearing of a liquid-droplet medium can 
also be increased by utilizing elliptically shaped 
beams9,10. Thus, the combination of profiling and 
ellipticity7 enables one, for example, to compensate for 
the side shift of the beam’s center of gravity in a 
moving nonlinear medium. In practice it is important 
to know not only the position of the beam center but 
also its intensity profile, or, in other words, to know 
whether the intensity reaches its maximum value at 
one or several points and what is the ratio of intensities 
at these points. Just this question of the structure of a 
beam with the valley of intensity on its axis is 
considered in this paper (see also Ref. 15). 
 

BASIC EQUATIONS 
 

Propagation of a light beam through a nonlinear 
regular medium is described by the quasi-optical 
equation, which is written in terms of nondimensional 
variable and has the form 
 

 (1) 
 

where A is the complex amplitude normalized by its peak 
value, z is longitudinal coordinate measured in units of 
the diffraction length ld = 2ka2, k is the wave number, a 
is the characteristic cross-sectional size of the beam,  is 
the Laplacian transverse operator; NA is a nonlinear 
term of the dielectric constant, which is equal to T in 
the case of thermal blooming in clear air and Ò + iWg 
for a cloudy atmosphere. Here  is the excess of the 
initial power over the value characteristic for thermal 
blooming, g is the optical depth of the unperturbed 
cloud, T is the nondimensional temperature change, W 
is the water-content of the medium11,12,13 normalized by 
its value in the unperturbed medium. 

The temperature change in a transparent medium 
moving along the x-axis perpendicular to the z-axis 
caused by propagation of a light pulse is described as 
follows 
 

 (2) 
 

In the case of a water-droplet aerosol one has to solve 
the following system of equations in T an W12,13 

 

 
 

 (3) 
 

Here (in Eqs. (2) and (3)) t is time normalized by 
 = a/v, v is the velocity of the transverse 
movement, of the medium M is the coefficient of 
molecular absorption, T is the fraction of energy 
absorbed by the droplets,  is the ratio of the initial 
beam power to that characterizing the vaporization of 
the droplets. 

At the boundary of the cross-sectional region at 
t = 0, the temperature change and the complex 
amplitude are equal to zero, while the water content 
W = 1. Since numerical simulations of the 
nonstationary propagation of a light beam which does 
not possess axial symmetry require much computation 
time, we consider only slit-shaped beams. In this case the 
initial distribution of the complex amplitude at z = 0 is 
given as follows 
 

 
 

 (4) 
 

where m = 2 to 10, Tp is the pulse duration, and 
K0 = 10. Since in the two-dimensional case beams 
with distribution (4) are called tubular, we shall use 
this term also to emphasize the fact that at x = x0 the 
intensity of a slit-shaped beam vanishes. 
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Note, that in studies of beam self-action in a 
cloudy medium the temperature change due to 
molecular absorption was not taken into account 
because for T  0.5

4 this absorption does not alter the 
qualitative picture of beam self-action. We have made 
calculations for paths 0  z  0.2 and the time 
interval 0  t  2.1; and for values of the parameter 
running from 1.05 to 4.5. Finally, it is worth noting 
that (as was shown in Refs. 6 and 8) the weakly 
diffracted beams of tubular profile can undergo an 
anomalous increase of the peak intensity and, 
consequently, the depth of the cleared portion of the 
path within the medium increases. Therefore the 
influence of diffraction on this effect is also considered 
below. 
 

LINEAR MEDIUM 
 

Let us now consider now the case of a linear 
medium in order to elucidate the influence of diffraction 
and thermal blooming on the propagation of laser beams 
which have zero intensity along their axes. According to 
Ref. 14 at the first stage of propagation a tubular beam 
(m = 2) undergoes focusing, which is focusing 
confirmed by numerical simulations. The computations 
showed that the intensities of the side maxima decrease 
with increase of z while the axial intensity of the beam 
increases (see solid and dashed lines 2 in Fig. 1). In the 
case of hypertubular beams (m > 2) subbeam structures 
form with growth of m. Their number and intensity are 
determined by the value of m and by the properties of 
the propagation path. Thus, the intensity of radiation 
between subbeams decreases with increase of m and z. It 
is important to note that new subbeams are formed in the 
region of geometrical shadow, to the right and to the left 
of the initial maxima. The central maximum is formed at 
the beginning of the propagation path. Thus, the 
formation of subbeams occurs due to the diffraction of 
radiation by the two slits. Since the slit irradiation is 
inhomogeneous, the diffraction picture has no zero 
maxima. In Fig. 1 solid and dashed lines b illustrate the 
intensity profiles of a beam with m = 6 at cross-sections 
z = 0.1 and 0.2. 
 

 
 

FIG. 1. Profiles of the intensity of the optical 
radiation propagating through a linear medium 
for Gaussian-shape pulses at the time t = 1.19 and 
cross-sections z = 0.1 (solid curves), z = 0.2 
(dashed curves). The values of the parameter m 
are shown near the curves; x0 = 4.5. 

CLOUDY MEDIUM 
 

Now let us consider the propagation of light 
pulses in a cloudy medium with the parameters 
T = 0.75, g = 1,  = 10, and  = 80, 150 and 1500. 
These values of the parameters were chosen to fit those 
at which the investigation of thermal blooming of 
profiled beams was carried out in Refs. 1–6 and 15. 
The computer calculations show that the propagation 
of the beam has practically the same character at 
 = 80 and 150, at least from the viewpoint of its 
profile. Note that  = 80 corresponds to the 
conditions of weak thermal blooming now being 
widely investigated (the effective value of a at which 
thermal blooming occurs, taking into account the 
value T and the normalization7,9,10, is 40). 
 

 
 

FIG. 2. Analogous to Fig. 1, profiles in a cloudy 
medium for a Gaussian pulse at t = 1.19, 
z = 0.05 (solid curves), z = 0.15 (dashed 
curves), x0 = 3.5. The values of the parameter m 
are shown near the curves.  

 

The propagation of a light pulse a through 
medium under conditions of weak thermal blooming is 
in many respects analogous to its propagation in a 
linear medium. Thus, for m = 2 at z = 0.05 the third 
maximum begins to form at the center of the beam 
with an intensity 3.2 times lower than the side maxima 
(see the appropriate solid curve in Fig. 2). The 
transmission profiles, determined according to the rule 
1 – W, and the temperature profiles have similar gaps 
at the centers. The clearing depth increases with time 
monotonically, and the value W reaches 0. 1 by the 
end of the pulse at the points of the initial intensity 
maxima of the beam and 0.55 at its center. The integral 
shift of the water content profile is about 0.75, in 
nondimensional units. 

While for the beam with m = 4 the propagation 
picture is analogous to the above, in the case m = 6 
the propagation picture changes drastically. First, the 
shift of the windward boundary of the cleared channel 
is about 20% smaller than for the beam with m = 2 
(see solid line b in Fig. 2). Secondly, at the center of 
the beam in the intensity valley there appears a narrow 
maximum at which the intensity is 1.2 times lower 
than at the side maxima. It is also important that 
within the internal region of the beam (in contrast to a 
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linear medium) there appear two local maxima due to 
the reflection of radiation from the clearer and hence 
optically less dense parts of the medium. The nonlinear 
character of the beam self-action is also manifested by 
the asymmetry in the temporal behavior of the peak 
intensity, i.e., the trailing edge of the pulse becomes 
more mildly sloping. The values of the water-content at 
the transmission maxima and minima are larger than in 
the case m = 2, being equal to 0.2 and 0.63 respectively. 
As the comparison of quantitative characteristics of the 
beams with m = 2 and 6 shows the largest difference 
between the beam powers received by an aperture 
Ra = 2 beam widths is about 10% of the maximum 
power level of the optical radiation with m = 2. 

The aberration picture of the beam continues to 
develop with further propagation of the beam. Thus, in 
the beam with m = 2 there are formed three maxima 
of the intensity and the transmission (see dashed curve 
2 in Fig. 2). Nonlinear absorption of light results in a 
decrease of the intensity peaks and their equalization. 
The width of the transmission channel increases with 
increase of z and its asymmetry appears. This 
asymmetry is observed as the better clearing of the 
region initially subtended by the second intensity 
maxima with respect to the movement of the medium. 
The intensity profile becomes more stratified at larger 
(up to 6) m values, and it involves, e.g., at z = 0.1, 
five local maxima, which are preserved up to the 
cross-section z = 0.15 (see Fig. 2). It is worth noting 
that between the two central maxima the intensity 
value is very close to zero. The diffraction results in 
the blooming of not only the individual subbeams but 
of the whole beam. But at the same time the subbeam 
structure is preserved during the propagation and the 
subbeams do not overlap. Then at the cross-section 
z = 0.2 the number of subbeams increases to seven 
(there were five in the linear medium) and the light 
intensity between subbeams vanishes (to less than 
5  10–3), which is caused by a strong absorption of 
light due to weak clearing of the cloud medium 
between the subbeams. As a result the nonlinear 
absorption stabilizes the structure of the subbeams. 

The character of the propagation does not change 
with increase of the value of  up to 150. Differences 
are observed only in shifts of the beam center, as well 
as in a larger broadening of the subbeams and in 
increase of their peak intensities due to nonlinear 
refraction and due to the difference of the intensities of 
the side maxima. In these cases the beam structure is in 
fact determined by the diffraction. Owing to the 
movement of the medium, its inhomogeneities are 
displaced in the region of small beam intensity and do 
not strongly effect the propagation of subbeams 
because the pulse duration is approximately equal to 
the transit time of the medium across the beam. As a 
result the shift of the center of gravity of the Gaussian 
pulse duplicates its shape. But in the case of a pulse 
with rectangular temporal profile (K0 = 0) of the 
same energy as the Gaussian pulse the character of its 
propagation is slightly different. Thus, clearing of the 
medium is weaker and the value of the peak intensity 

is lower and increases toward the end of the pulse. The 
most essential difference is connected with the beam 
center shift, although it is seven times smaller than for 
the Gaussian pulse. At first, the center shifts in the 
direction counter to the medium movement for t  0.6 
(depending on the beam profile). The optically denser 
uncleared part of the medium then captures some 
individual subbeams and they shift together with the 
medium until the pulse ends. 
 

 
 

FIG. 3. The position of the beam’s center of 
gravity x for the case of a rectangular pulse as a 
function of time at the cross-section z = 0.2 for 
 = 1500 in a cloudy medium (solid line, the scale 
is shown on the outer side of the xc axis); and for 
 = 150 in a transparent medium (dashed curves; 
the scale is shown on the inner side of the xc axis). 
The pulse propagates in a transparent medium 
with thermal mechanism of nonlinearity. The 
values of the parameter m are shown on the curves. 

 

Neither further increase of  up to 1500, nor 
increase of the beam power, nor decrease of T 
(provided the value of T remains constant) change 
the structure of subbeams in the rectangular pulse. The 
intensity of the two subbeams which are the farthest 
from the center is 15% lower than the intensity of the 
three proceeding ones. In contrast to the case of 
 = 150, the center of gravity of the beam always 
moves in the direction counter to the medium 
movement. Thus, for example, at the cross-section 
z = 0.2 (see Fig. 3, a solid curve) the deviation of the 
beam from the z axis first increases for t  1 and then 
decreases for 1  t  1.8 and afterwards increases 
again. Obviously the oscillations of the beam center of 
gravity continue for t > 2.1. This is caused by the 
action of two opposing mechanisms of nonlinearity, 
i.e., thermal blooming and beam focusing due to the 
reflections from the optically denser uncleared part of 
the cloudy medium. The maximum shift of the beam 
center does not exceed 0.13 in nondimensional units. 

For the Gaussian beam (see above) and  = 1500 
the shift of the beam center can reach 0.8 in the middle 
of the pulse. The shift is in the direction counter to the 
medium movement and duplicates the pulse shape. It is 
important to note that at t = 1.05 there appears a 
narrow Intensity peak in the light pulse. The intensity 
of this peak is 4 to 5 times greater than the intensity of 
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the other maxima, and it is strongly shifted towards 
the wind. In this case the structure of nonoverlapping 
subbeams is formed only at the beginning and at the 
end of the pulse, when the nonlinearity is still weak. 
Nonlinear self-action taking place in the middle of the 
pulse yields the formation of the intensity distribution 
with a narrow maximum. 
 

 
 

FIG. 4. Intensity profiles for the Gaussian pulse 
with m = 6, in a transparent medium with 
thermal nonlinearity at the time t = 1.225 at 
cross-sections z = 0.05 (solid curve a) and 
z = 0.2 (dashed line a), z = 0.1(b), and 
z = 0.15 (c). 

 
THERMAL BLOOMING  

IN A TRANSPARENT MEDIUM 
 

An investigation analogous to the one discussed 
above was carried out for the case of thermal blooming 
in a transparent medium. A detailed discussion of the 
results of numerical simulations concerning this case 
cam be found in Ref. 15. In this paper we will discuss 
only some typical features which distinguish this case 
from the previous one of a cloudy medium and beam 
with distribution (4), where K0 = 10, m = 6, x0 = 6, 
t = 1.05, and  = 150. Thus, in the case of beams 
with m = 2, in contrast to the cloudy medium, a 
narrow intensity distribution with a sharp maximum 
is already formed at z = 0.05, the maximum intensity 
value being dependent on m (see Fig. 4a).  

The intensity of this maximum at first increases with 
increase of z and then decreases. In time this region 
divides into two regions the peak radiation intensity of 
which exceeds the initial maximum. 

It should be emphasized that in contrast to cloudy 
and linear media the formation of subbeams in the 
transparent medium due to thermal blooming occurs 
mainly in the internal part of the intensity 
distribution, the equalizing of subbeam intensities 
being observed only on the beam periphery. In this 
case the main maximum is strongly shifted in the 
direction counters the medium movement (see Fig. 4). 
The intensity value in the gaps between the subbeams 
differs significantly from zero. 

In the case of rectangular pulses the subbeam 
structure is more pronounced, i.e. there exist two of 
equal intensity. In this case the shift of the beam 
center is approximately equal to that occurring in a 
cloudy medium with  = 1500. There is also an 
oscillatory behavior in time of the beam’s center 
position and of its peak intensity. Figure 3 illustrates 
the temporal behavior of the beam’s center position 
(dashed curves). 

Note that the subbeam structure is formed again 
under the conditions of weak self-action, e.g., at 
 = 15. But because of the motion of the medium the 
beam’s center of gravity is greatly shifted in time (up 
to 0. 14 in nondimensional units). As a consequence, 
the intensity of light on the receiver axis will 
periodically increase and decrease. 
 

CONCLUSIONS 
 

The results discussed above allow one to arrive at 
the following conclusions. The structure of the beam 
having a gap in the intensity distribution on the axis is 
determined by the parameter m which characterizes 
the proximity of the intensity distribution to 
plateau-shaped function. This structure is also 
determined by the nonlinearity mechanism, pulse 
shape, and the excess of the beam power over the 
characteristic power of thermal blooming. In the case 
of light beams with m > 2 under the conditions of 
weak self-action the structure of noninteracting 
subbeams is formed due to the slit diffraction both in 
transparent and cloudy media. The nonlinear light 
absorption stabilizes this structure and equalizes the 
intensity of the subbeams. It should be noted that the 
formation of the subbeam structure complicates the 
operation of adaptive - systems which correct for the 
amplitude-phase distortions of the wavefront since 
there appear several maxima of equal intensity at the 
receiving aperture. The thermal blooming of 
high-power beams stabilizes the intensity profile both 
in transparent and in absorbing media, i.e. in this case 
there exists a single we 11-pronounced intensity 
maximum, but it is strongly shifted towards the wind. 
The oscillatory behavior in time of the intensity and of 
the position of the center of gravity of the beam can 
occur for pulses whose duration is greater than , due 
to the optical capture of the radiation intensity 
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maxima by the denser regions of the medium. These are 
either uncleared regions (in the case of a cloudy 
medium) or regions which are not heated by optical 
radiation (the case of a transparent medium). 
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