
358  Atmos. Oceanic Opt.  /April  1989/  Vol. 2,  No. 4 V.B. Novosel’tsev and V.T. Kalaida 
 

 

SOFTWARE CONCEPTS FOR AN ATMOSPHERIC OPTICS  
PROGRAMMING ENVIRONMENT 

 
 

V.B. Novosel’tsev and V.T. Kalaida 
 
 

Institute of Atmospheric Optics, 
Siberian Branch, USSR Academy of Sciences, Tomsk 

Received November 15, 1988 
 
 

In this paper, we analyze modern software design methodology and the subject matter 
of atmospheric optics, and propose the implementation of a software environment 
conductive to problem-solving in that discipline. We analyze the requirements placed on 
such a system by both the user and the developer, and suggest the most suitable 
architecture to meet those requirements. 

 
 

Atmospheric optics is a scientific discipline 
characterized by large amounts of data to be processed 
in solving relevant problems1. In addition, there are 
other peculiarities, including a critical need for 
complicated computer networks which are used, for 
example, to process data taken by a grid of outposts, 
providing for global reconstruction of the fields of a 
number of optical parameters of the atmosphere. The 
problem is further complicated by the need to carry out 
data-processing and analysis in real time. 

The above considerations appear to impose very 
stringent requirements on the software for atmospheric 
optics problems. The software design concepts 
proposed reflect the state of the art in computer 
science, and take advantage of experience gained in the 
production of special-purpose systems geared to 
problem-solving in the field of atmospheric optics2,3. 
We use the term "problem-solving system" (PSS) here 
to describe the software in question. 

The PSS comprises an integrated 
hardware/software environment. In recent years, it has 
often been pointed out4–6 that the most time-consuming 
aspect of such projects is software development. To a 
certain extent, this is unfortunately due to the fact that 
the programming of large systems with a great many 
interfaces is more of an art than a science. 

Programs as marketable products must take two 
points of view into account: that of a potential user, on 
the one hand, and that of the developer on the other. 

User requirements may be divided into two 
categories. The first includes those of a general nature, 
and pertain to all modern software systems, while the 
second includes features specific to PSS. 

The first category thus includes (a) 
user-friendliness; (b) primarily interactive operation; 
(c) fast system response. The special requirements 
specific to a PSS- include (a) efficient, powerful and 
convenient data-management tools; (b) formal 
description capability for the subject area (SA) chosen, 
i.e., conceptual and algorithmic knowledge 
representation; (c) a deductive inference capability 
and an expert system (ES) built around knowledge  

base (SAKB) and finally, (d) problem-oriented 
interfaces between the various PSS- subsystems and 
the user that provide a wide range of service functions. 
The latter enable an untrained user to solve problems 
within the scope of his subject area by means of SSS. 
 

 
 

FIG. 1. PSS architecture (user’s view-point): 
user interfaces,  data streams. 

 

Thus, a user’s idea of the functional PSS 
architecture can in general be represented as in Fig. 1. 
The user can formulate and solve his problem solely by 
ES whose functions comprise both an examination 
(expertise) of its own and proper utilization and storage 
of data and knowledge. Additionally, there also exists a 
possibility of direct use and modification of the data and 
SA knowledge bases. Moreover, a mixed PSSS strategy 
can be chosen, which implies that the user is free to take 
the initiative in the man-machine dialog with the ES and 
introduce the necessary changes in the data (knowledge 
base, ES inference rules). User interfaces are to meet 
particular requirements. First, the actual number of 
interfaces must be minimized. Second, the minimal 
interface set should be consistent. Third, the interface 
drivers should be adaptable to the specific subject area, 
i.e., problem-oriented. Finally, apart from their 
subject-area adaptability, the interfaces should provide 
the user with a certain amount of freedom to operate 
with more complicated entities, such a relationships 
between ideas, in a language as close to the appropriate 
professional jargon as possible. 
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Should we compare the user’s ideas of a PSSS 
with the visible (upper) part of an iceberg, the system 
functional architecture would then correspond to the 
iceberg as a whole. This figurative juxtaposition seems 
to reflect a very important fact: a software system 
implementation should not be concerned solely with 
the development of the technical (underwater) aspect 
of the problem. In other words, the user’s ideas as to 
how the system is to be manipulated should not be 
ignored. The system is to be well-balanced to ensure 
that no user’s requirements are overlooked and no 
detail related to the implementation itself come to 
light. A functional PSS- architecture from a 
developer’s viewpoint, shown in Figure 2, is . a 
revised version of that given in Figure 1. 
 

 
 

FIG. 2. Revised PSS architecture 
 

Following Lavrov7, we consider three levels of 
subject-area corresponding: 

1. The conceptual level, where the abstract 
objects of the subject area corresponding to the natural 
terms of the relevant theory are specified and certain 
logical relations between the objects are stated; 

2. The algorithmic or procedural level including 
computational procedures that are implementations of 
some of the relations from the above level" indicating 
the feasibility of obtaining output values from input 
quantities; 

3. The actual or subject level, made up of the 
experimental evidence or observable that represent 
values for some abstract objects of the subject area 
that are stored in the database. 

The first kind of information (Level 1) may be 
decomposed into two new sublevels distinguished by 
the relations involved and the degree of complexity 
inherent in the notions linked by the relations. This 
sublevel is often referred to as a computational model 
of the original subject area (see Ref. 7). The relations 

from the second sublevel are as a rule much more 
complicated. They can be defined using heuristic 
considerations, and are mainly built over nontrivial 
structures of the subject-area model elements. In our 
PSSS project, the knowledge of the second sublevel is 
supported by ES, while the information of the first 
sublevel forms a subject-area knowledge base 
describing the computational model. 
 

 
 

FIG.3. Library system 
 

PSS is organized as an expandable system of 
monitors that support both internal and interfaces, and 
implement all other system functions. A number of 
libraries are also involved in the system. One of the 
major PSSS principles is its hierarchical configuration. 
A library serves as a fundamental unit of the system (see 
Figure 3). PSS includes standard libraries supported by 
the system library monitor. However, units organized in 
a different way can be employed too, each having a 
supporting monitor of its own. A library catalogue 
contains conventionally located auxiliary information 
and a pointer to the corresponding monitor loader. 

Modules are elements of some library, and in 
particular, the catalog of a library and the control 
monitor are modules. Even an external library can be 
included in a given library as a module. In a given 
library, a module may even be another library, or more 
precisely, a pointer to another library and to a memory 
segment allocated for data transfer (port). It is to be 
noted that a similar structure (an address port) is 
incorporated in each library activated by the one of 
interest. The former will be termed the primary library 
and the latter will be named secondary. The basic 
operation cycle at this level is a session. The secondary 
library activation opens up the session by executing a 
number of startup procedures, such as, e.g., a primary 
library port initialization, secondary library 
duplication, and a monitor linkage. When the session 
is over, as needed, the primary library monitor can 
convert a copy of the secondary library into an actual 
element, introducing a new reference entry in the 
library catalogue. The proposed structure is readily 
implemented. Moreover, it matches the functional 
PSS architecture of Fig. 2 fairly well, and simplifies 
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project development and support. However, our 
approach is by no means optimal, its main 
disadvantages being the abundance of references and 
strong restrictions on the internal library interfaces. 

Another PSS component is, in fact, a set of 
conventional expert systems of a hierarchical (treelike) 
structure resulting from the decomposition of a subject 
area into nearly independent fields. Such an 
organization of the PSS. expert component exhibits a 
number of favorable properties. These are summarized 
as follows: 

1. Improvement in execution time 
Any expert system is based upon a set of inference 

rules. A subject field comparable to atmospheric optics 
area requires a priori a large rule base. Since the expert 
evaluation efficiency is governed by the second or 
higher power of the total number of rules, the 
decomposition of the initial rule base provides a 
definite improvement in expert-system resource. This 
is .confirmed by the inequality 
 

 
 

2. Simplicity of system modification 
It Is important to provide for the maintenance and 

support phase of the software life cycle. This stage 
implies that the software has been divorced from the 
development groups and is available to modification. 
A structured overall system design (particularly the 
expert part) facilitates introduction of possible 
changes in the software after the project has been 
completed. In our case, tree nodes can be modified, 
deleted or replaced subject to the condition that 
standard interface requirements be met. 

3. Simplicity of subject area modification 
Expert systems reflect current knowledge about the 

subject area of interest. In effect, this knowledge is not 
to be treated as something absolute and final, because 
new information may be acquired and/or the relevant 
theory may be altered. The proposed hierarchical 
structure of our expert system, or to be more precise the 
inherent modularity of such a design, provides a simple 
means for introducing new conceptual knowledge about 
a subject area in accordance with the changing views of 
an expert user in the relevant discipline. 
 

 
 

FIG.4. Expert system operation 
 

User interaction with the system consists in 
making a number of queries of experts at different 
levels (hereinafter, by "experts" we mean specific 
components of the system as a whole that are located at 
the nodes of the three in Fig. 4). The user can abort 
the current expert communication and return to a 
higher level, where an expert will have a broader, than 
detailed information or, following instructions of the 
current expert, address a lower-level expert for a 
solution to a particular problem stated at the previous 
step. Such an expert can also clarify an approach to a 
solution of the user’s problem. Expert system 
applications appear to be similar to the performance 
and verification process8. However, it should be borne 
in mind that our approach relies on experts making use 
of independent traditional ES’s with their own rule 
bases and specific inference procedures. There may be 
connected branches in the ES tree. This is the case 
where the system has to deal with different problems 
(having different Initial states] and, in doing so, to 
solve similar subproblems. The lowest-level experts 
are tightly coupled to the computational model and 
database for the subject area. In the course of this 
interaction, one builds a program to solve the user’s 
problem, as well as implementing a program execution 
monitor for the local-area network. 

A constituent part of the PSSS architecture is its 
knowledge base (KB); the latter provides a description 
of the subject-area model. While implementing 
specification tools for the SAM definition, we have 
tried to provide for a well-balanced use of procedural 
and non-procedural mechanisms. Pure PROLOG9 or 
Descartes10 are typical languages supporting the 
non-procedural programming style. When both tools 
were actually used it proved necessary to supplement 
them with structures provides by more traditional 
programming languages. In the terminology of 
Tyugy11, languages used to describe computational 
models are designated "conceptual programming 
languages". A translation of a description of a 
computational model, combined with an 
implementation of the elements of that model, 
constitutes a knowledge base that may be used to 
automatically obtain a solution to a problem 
formulated within the CM framework. The 
problem-solving program is designed to a set of 
functional specifications. If the CM furnishes a 
comprehensive characterization of the SA under 
investigation, advantage can be taken of 
non-procedural specifications, i.e., it is the parameters 
to be computed which are specified rather than the 
operational algorithm. The proposed language for the 
SAM description combines certain concepts 
underlying both Descartes10 and Utopist11,12. 

Informally, a CM according to Tyugu13 (referred 
to as a standard) is a set of concept names in some 
applied theory, known as elements, and the 
computational relationships that connect them. While 
both Descartes and Utopist are capable of describing 
models structurally, they essentially do no more than 
reduce the amount of testual description involved. The 
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point is that before the analysis/synthesis procedures 
are executed, the curtailed definition is recast in a 
standard CM form (the unfolding process). 
Undoubtedly, of great interest is the extension of the 
CM-theory to include the application of the synthesis 
procedures to the structural CM description as well. It 
can be illustrated by the following considerations: 

1. If a CM description makes use of recursive 
structures, the unfolding process may be incomplete. 

2. Provided recursions are forbidden, the size of 
the unfolded model may be exponentially dependent 
on the initial CM definition. 

3. Unfolding will further complicate matters 
when a synthesized program is to be analyzed in terms 
of a given CM description because it will give rise to a 
great number of auxiliary elements, making the 
debugging of the CM definition rather difficult. 

The foregoing disadvantages have been pointed 
out by many authors (see e.g. , Ref. 14). As an 
alternative, some subset of the predicate calculus is 
generally employed to avoid. Our approach is based on 
the structural computational model formalism 
introduced elsewhere . The resulting CM is a finite 
collection of relationship schemes of the form 
Ì = {T1,,Tm}, where Ti (i = l,..., m) defines a 
nontrivial SA object structure. For a heterogeneous 
object, a list of its component names (scheme 
elements) and a set of computability sentences (CS) of 
the form F: A  x over the elements are to be fixed. 
CS imply that applying the program term F to the 
values of À-elements will yield the values of 
x-elements. So far the relationship scheme has proved 
to be similar to the standard CM. The resemblance will 
vanish as soon as another way to define element types 
appears, associating scheme elements with certain 
relationship schemes of the same model. This mechanism 
leads to a CM that adequately reflects the hierarchy of 
the original SA concepts. Note that recursive object 
definitions are used in this formalism. 

The information received from the CM description 
in combination with the problem statement represents a 
specification utilized by the PSSS program generator for 
target program synthesis. The programs thus built 
involve both branches and recursion. The synthesis 
procedures are sufficiently effective to be used 
interactively. Up to this point, the project in question 
has had no particular database management system. 
Fortunately, the functional architecture (see Figure 3) 
does allow atmospheric optics problems to be solved by 
means of the available databases. Nevertheless, this 

by no means suggests that the development of special 
PSSS databases would be an unwarranted luxury. 
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