
358 Atmos. Oceanic Opt. /April 1989/ Vol. 2, No. 4 V.B. Novosel’tsev and V.T. Kalaida

SOFTWARE CONCEPTS FOR AN ATMOSPHERIC OPTICS
PROGRAMMING ENVIRONMENT

V.B. Novosel’tsev and V.T. Kalaida

Institute of Atmospheric Optics,
Siberian Branch, USSR Academy of Sciences, Tomsk

Received November 15, 1988

In this paper, we analyze modern software design methodology and the subject matter
of atmospheric optics, and propose the implementation of a software environment
conductive to problem-solving in that discipline. We analyze the requirements placed on
such a system by both the user and the developer, and suggest the most suitable
architecture to meet those requirements.

Atmospheric optics is a scientific discipline
characterized by large amounts of data to be processed
in solving relevant problems1. In addition, there are
other peculiarities, including a critical need for
complicated computer networks which are used, for
example, to process data taken by a grid of outposts,
providing for global reconstruction of the fields of a
number of optical parameters of the atmosphere. The
problem is further complicated by the need to carry out
data-processing and analysis in real time.

The above considerations appear to impose very
stringent requirements on the software for atmospheric
optics problems. The software design concepts
proposed reflect the state of the art in computer
science, and take advantage of experience gained in the
production of special-purpose systems geared to
problem-solving in the field of atmospheric optics2,3.
We use the term "problem-solving system" (PSS) here
to describe the software in question.

The PSS comprises an integrated
hardware/software environment. In recent years, it has
often been pointed out4–6 that the most time-consuming
aspect of such projects is software development. To a
certain extent, this is unfortunately due to the fact that
the programming of large systems with a great many
interfaces is more of an art than a science.

Programs as marketable products must take two
points of view into account: that of a potential user, on
the one hand, and that of the developer on the other.

User requirements may be divided into two
categories. The first includes those of a general nature,
and pertain to all modern software systems, while the
second includes features specific to PSS.

The first category thus includes (a)
user-friendliness; (b) primarily interactive operation;
(c) fast system response. The special requirements
specific to a PSS- include (a) efficient, powerful and
convenient data-management tools; (b) formal
description capability for the subject area (SA) chosen,
i.e., conceptual and algorithmic knowledge
representation; (c) a deductive inference capability
and an expert system (ES) built around knowledge

base (SAKB) and finally, (d) problem-oriented
interfaces between the various PSS- subsystems and
the user that provide a wide range of service functions.
The latter enable an untrained user to solve problems
within the scope of his subject area by means of SSS.

FIG. 1. PSS architecture (user’s view-point):
user interfaces,  data streams.

Thus, a user’s idea of the functional PSS
architecture can in general be represented as in Fig. 1.
The user can formulate and solve his problem solely by
ES whose functions comprise both an examination
(expertise) of its own and proper utilization and storage
of data and knowledge. Additionally, there also exists a
possibility of direct use and modification of the data and
SA knowledge bases. Moreover, a mixed PSSS strategy
can be chosen, which implies that the user is free to take
the initiative in the man-machine dialog with the ES and
introduce the necessary changes in the data (knowledge
base, ES inference rules). User interfaces are to meet
particular requirements. First, the actual number of
interfaces must be minimized. Second, the minimal
interface set should be consistent. Third, the interface
drivers should be adaptable to the specific subject area,
i.e., problem-oriented. Finally, apart from their
subject-area adaptability, the interfaces should provide
the user with a certain amount of freedom to operate
with more complicated entities, such a relationships
between ideas, in a language as close to the appropriate
professional jargon as possible.

V.B. Novosel’tsev and V.T. Kalaida Vol. 2, No. 4 /April 1989/ Atmos. Oceanic Opt. 359

Should we compare the user’s ideas of a PSSS
with the visible (upper) part of an iceberg, the system
functional architecture would then correspond to the
iceberg as a whole. This figurative juxtaposition seems
to reflect a very important fact: a software system
implementation should not be concerned solely with
the development of the technical (underwater) aspect
of the problem. In other words, the user’s ideas as to
how the system is to be manipulated should not be
ignored. The system is to be well-balanced to ensure
that no user’s requirements are overlooked and no
detail related to the implementation itself come to
light. A functional PSS- architecture from a
developer’s viewpoint, shown in Figure 2, is . a
revised version of that given in Figure 1.

FIG. 2. Revised PSS architecture

Following Lavrov7, we consider three levels of
subject-area corresponding:

1. The conceptual level, where the abstract
objects of the subject area corresponding to the natural
terms of the relevant theory are specified and certain
logical relations between the objects are stated;

2. The algorithmic or procedural level including
computational procedures that are implementations of
some of the relations from the above level" indicating
the feasibility of obtaining output values from input
quantities;

3. The actual or subject level, made up of the
experimental evidence or observable that represent
values for some abstract objects of the subject area
that are stored in the database.

The first kind of information (Level 1) may be
decomposed into two new sublevels distinguished by
the relations involved and the degree of complexity
inherent in the notions linked by the relations. This
sublevel is often referred to as a computational model
of the original subject area (see Ref. 7). The relations

from the second sublevel are as a rule much more
complicated. They can be defined using heuristic
considerations, and are mainly built over nontrivial
structures of the subject-area model elements. In our
PSSS project, the knowledge of the second sublevel is
supported by ES, while the information of the first
sublevel forms a subject-area knowledge base
describing the computational model.

FIG.3. Library system

PSS is organized as an expandable system of
monitors that support both internal and interfaces, and
implement all other system functions. A number of
libraries are also involved in the system. One of the
major PSSS principles is its hierarchical configuration.
A library serves as a fundamental unit of the system (see
Figure 3). PSS includes standard libraries supported by
the system library monitor. However, units organized in
a different way can be employed too, each having a
supporting monitor of its own. A library catalogue
contains conventionally located auxiliary information
and a pointer to the corresponding monitor loader.

Modules are elements of some library, and in
particular, the catalog of a library and the control
monitor are modules. Even an external library can be
included in a given library as a module. In a given
library, a module may even be another library, or more
precisely, a pointer to another library and to a memory
segment allocated for data transfer (port). It is to be
noted that a similar structure (an address port) is
incorporated in each library activated by the one of
interest. The former will be termed the primary library
and the latter will be named secondary. The basic
operation cycle at this level is a session. The secondary
library activation opens up the session by executing a
number of startup procedures, such as, e.g., a primary
library port initialization, secondary library
duplication, and a monitor linkage. When the session
is over, as needed, the primary library monitor can
convert a copy of the secondary library into an actual
element, introducing a new reference entry in the
library catalogue. The proposed structure is readily
implemented. Moreover, it matches the functional
PSS architecture of Fig. 2 fairly well, and simplifies

360 Atmos. Oceanic Opt. /April 1989/ Vol. 2, No. 4 V.B. Novosel’tsev and V.T. Kalaida

project development and support. However, our
approach is by no means optimal, its main
disadvantages being the abundance of references and
strong restrictions on the internal library interfaces.

Another PSS component is, in fact, a set of
conventional expert systems of a hierarchical (treelike)
structure resulting from the decomposition of a subject
area into nearly independent fields. Such an
organization of the PSS. expert component exhibits a
number of favorable properties. These are summarized
as follows:

1. Improvement in execution time
Any expert system is based upon a set of inference

rules. A subject field comparable to atmospheric optics
area requires a priori a large rule base. Since the expert
evaluation efficiency is governed by the second or
higher power of the total number of rules, the
decomposition of the initial rule base provides a
definite improvement in expert-system resource. This
is .confirmed by the inequality

2. Simplicity of system modification
It Is important to provide for the maintenance and

support phase of the software life cycle. This stage
implies that the software has been divorced from the
development groups and is available to modification.
A structured overall system design (particularly the
expert part) facilitates introduction of possible
changes in the software after the project has been
completed. In our case, tree nodes can be modified,
deleted or replaced subject to the condition that
standard interface requirements be met.

3. Simplicity of subject area modification
Expert systems reflect current knowledge about the

subject area of interest. In effect, this knowledge is not
to be treated as something absolute and final, because
new information may be acquired and/or the relevant
theory may be altered. The proposed hierarchical
structure of our expert system, or to be more precise the
inherent modularity of such a design, provides a simple
means for introducing new conceptual knowledge about
a subject area in accordance with the changing views of
an expert user in the relevant discipline.

FIG.4. Expert system operation

User interaction with the system consists in
making a number of queries of experts at different
levels (hereinafter, by "experts" we mean specific
components of the system as a whole that are located at
the nodes of the three in Fig. 4). The user can abort
the current expert communication and return to a
higher level, where an expert will have a broader, than
detailed information or, following instructions of the
current expert, address a lower-level expert for a
solution to a particular problem stated at the previous
step. Such an expert can also clarify an approach to a
solution of the user’s problem. Expert system
applications appear to be similar to the performance
and verification process8. However, it should be borne
in mind that our approach relies on experts making use
of independent traditional ES’s with their own rule
bases and specific inference procedures. There may be
connected branches in the ES tree. This is the case
where the system has to deal with different problems
(having different Initial states] and, in doing so, to
solve similar subproblems. The lowest-level experts
are tightly coupled to the computational model and
database for the subject area. In the course of this
interaction, one builds a program to solve the user’s
problem, as well as implementing a program execution
monitor for the local-area network.

A constituent part of the PSSS architecture is its
knowledge base (KB); the latter provides a description
of the subject-area model. While implementing
specification tools for the SAM definition, we have
tried to provide for a well-balanced use of procedural
and non-procedural mechanisms. Pure PROLOG9 or
Descartes10 are typical languages supporting the
non-procedural programming style. When both tools
were actually used it proved necessary to supplement
them with structures provides by more traditional
programming languages. In the terminology of
Tyugy11, languages used to describe computational
models are designated "conceptual programming
languages". A translation of a description of a
computational model, combined with an
implementation of the elements of that model,
constitutes a knowledge base that may be used to
automatically obtain a solution to a problem
formulated within the CM framework. The
problem-solving program is designed to a set of
functional specifications. If the CM furnishes a
comprehensive characterization of the SA under
investigation, advantage can be taken of
non-procedural specifications, i.e., it is the parameters
to be computed which are specified rather than the
operational algorithm. The proposed language for the
SAM description combines certain concepts
underlying both Descartes10 and Utopist11,12.

Informally, a CM according to Tyugu13 (referred
to as a standard) is a set of concept names in some
applied theory, known as elements, and the
computational relationships that connect them. While
both Descartes and Utopist are capable of describing
models structurally, they essentially do no more than
reduce the amount of testual description involved. The

V.B. Novosel’tsev and V.T. Kalaida Vol. 2, No. 4 /April 1989/ Atmos. Oceanic Opt. 361

point is that before the analysis/synthesis procedures
are executed, the curtailed definition is recast in a
standard CM form (the unfolding process).
Undoubtedly, of great interest is the extension of the
CM-theory to include the application of the synthesis
procedures to the structural CM description as well. It
can be illustrated by the following considerations:

1. If a CM description makes use of recursive
structures, the unfolding process may be incomplete.

2. Provided recursions are forbidden, the size of
the unfolded model may be exponentially dependent
on the initial CM definition.

3. Unfolding will further complicate matters
when a synthesized program is to be analyzed in terms
of a given CM description because it will give rise to a
great number of auxiliary elements, making the
debugging of the CM definition rather difficult.

The foregoing disadvantages have been pointed
out by many authors (see e.g. , Ref. 14). As an
alternative, some subset of the predicate calculus is
generally employed to avoid. Our approach is based on
the structural computational model formalism
introduced elsewhere . The resulting CM is a finite
collection of relationship schemes of the form
Ì = {T1,,Tm}, where Ti (i = l,..., m) defines a
nontrivial SA object structure. For a heterogeneous
object, a list of its component names (scheme
elements) and a set of computability sentences (CS) of
the form F: A  x over the elements are to be fixed.
CS imply that applying the program term F to the
values of À-elements will yield the values of
x-elements. So far the relationship scheme has proved
to be similar to the standard CM. The resemblance will
vanish as soon as another way to define element types
appears, associating scheme elements with certain
relationship schemes of the same model. This mechanism
leads to a CM that adequately reflects the hierarchy of
the original SA concepts. Note that recursive object
definitions are used in this formalism.

The information received from the CM description
in combination with the problem statement represents a
specification utilized by the PSSS program generator for
target program synthesis. The programs thus built
involve both branches and recursion. The synthesis
procedures are sufficiently effective to be used
interactively. Up to this point, the project in question
has had no particular database management system.
Fortunately, the functional architecture (see Figure 3)
does allow atmospheric optics problems to be solved by
means of the available databases. Nevertheless, this

by no means suggests that the development of special
PSSS databases would be an unwarranted luxury.

REFERENCES

1. V.E. Zuev, Opt. Atm. 1, 5 (1988).
2. O.K. Voitsekhovskaya, V.E. Zuev, and
VI.G. Tyuterev, Opt. Atm. 1, 3 (1988).
3. V.S. Komarov, A.A. Mitsel’, S.A. Mikhailov,
Yu.N. Ponomarev, V.P. Rudenko and Ê.M. Firsov,
Opt. Atm. 1, 84 (1988).
4. F.P. Brooks, The Mythical Man Month,
Addison-Wesley Publishing Company, Inc., Reading,
Mass. (1975).
5. J.M. Fox, Software and its Development,
Prentice-Hall, Inc., Englewood Cliffs, N. Y. (1982).
6. V.N. Agafonov, ed., Requirements and
Specifications in Program Development, (Mir,
Moscow, 1984).
7. S.S. Lavrov, Knowledge Representation and
Application in Automated Systems
Mikroprotsessornye sredstva i sistemy,, 14 (1986).
8. J.L. Olty and M.J. Coombs, Expert Systems.
Concepts and Examples (Published by NCC
Publications, 1984).
9. A. Colmerauer, H. Kanoui, R. Pasero and
P. Roussel, Un system de Communication
Homme-Machine en Francais, Research report.
Groupe Intelligence Artificiel (Universite Aix
Marseille 11, 1973).
10. I.Î. Babayev, F.A. Novikov and
T.I. Petrushina, Descartes-Input Language of
SPORA-System Applied Informatics (Nauka,
Moscow, 1984).
11. E.H. Tyugu, Conceptual Programming (Nauka,
Moscow, 1984).
12. M.I. Kakhro, A.P. Kalja and E.H. Tyugu ES
EVM (PRIZ) Hardware Programming System
(Finansy i statistlka, Moskow, 1981).
13. E.H. Tyugu, Solving Problems by

Computational Models, Zhur. Vychislitel’noi
matematiki i matematicheskoi fiziki 10, 716 (1970).
14. V.S. Neiman, Program Synthesis for Descriptions
of Recursive Relation in: (Sintez programm, Ustinov,
1985).
15. V.B. Novosel’tsev, Structural Computational
Models, Formal Basis, in: (Sintez program, Ustinov,
1985).

