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An approximate analytic expression for the coefficient of optical attenuation by a 
polydisperse plate-crystal system is derived within the framework of physical optics. The 
proposed model implies both neutral behavior of the attenuation coefficient in the visible 
and its pronounced wavelength dependence in the IR region. A comparison with the 
integral representation shows that the attenuation coefficient calculated by our algebraic 
formula is correct to within 3%. 

 

 
Numerical simulation of optical propagation 

through various polydisperse media requires 
cumbersome calculations of attenuation coefficients. 
The attenuation coefficient is defined by an integral 
whose integrand contains a factor describing the 
attenuation cross-section due to a given particle shape. 
The cross-section, in turn, is found by solution of the 
problem of wave scattering by a single particle. 
However, this kind of solution cannot be obtained for 
all possible particle shapes, while only a small number 
of those available are expressed by simple relations. 
Therefore, for the majority of polydisperse models the 
attenuation coefficient can be found only numerically. 
Nevertheless, there is a polydisperse model 
approaching reality that does enable one to carry out 
integration in analytical form. The present paper 
discusses this very model. 

Consider a collection of circular plates normally 
oriented to the incident radiation as a model. Each 
plate is characterized by two linear dimensions, i.e., its 
radius a and thickness L. As a result, the coefficient of 
attenuation of optical radiation by this polydisperse 
medium can be written as 
 

 (1) 
 

Íåãå N(a, L) is the two-dimensional particle size 
distribution function; (a, L, ) is the attenuation 
cross-section due to a circular plate at the optical 
wavelength . Equation (1) can be simplified by using a 
priori information on the interrelation between a and L 
for a single crystal. It has been established 
experimentally that there exists the following functional 
relationship between the linear dimensions of the plate 
crystal1: 
 

 (2) 
 

where B = 2.020 and  = 0.449 are constants, and 
the values a and L are expressed in m. Upon 
substitution of Eq. (2) into Eq. (1) we obtain 
 

 (3) 
 

The attenuation cross-section  is generally 
dependent on the polarization state of the incident 
radiation2. However, for normal incidence on the 
plate,  has a simpler form3: 
 

 (4) 
 
with 
 

 (5) 
 

 
 

 
 

where k = 2/ is the wave number and æn n i   is 
the complex refractive index. By virtue of Eq. (4), 
relation (3) can be recast as the sum of two terms, and 
we have 
 

 (6) 
 

where 
 

 (7) 
 

and 
 

 (8) 
 

The crystal size distribution function is, as a rule, 
unimodal and is adequately approximated by the 
-distribution4: 
 

 (9) 
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Here N is the particle concentration per unit volume, 
and am and  are preset distribution parameters. 

Using Eq. (9), integral (7) becomes 
 

 (10) 
 

For 2 to be expressed analytically it is first recast in 
the form 
 

 (11) 
 

Here a = F(L) = 0.5; (L/B)1/ is the inverse 

function of L = f(a); 
1

( ) /
2

F L dF dL B     

1/ 1( / ) ,L B  and S depends solely on the plate 
thickness L. We introduce the notation 
2{a2N(a)}a=F(L) F(L)= ( ).N L  Then, 
 

 (12) 
 

The function ( )N L differs from the -distribution, 
even though it also has one maximum. To carry out the 
Integration in Eq. (10) in analytic form, ( )N L is 
replaced by the function N(L). This new function N(L) 
should be the best approximation of ( )N L  over the 
entire integration interval. In other words, the value 
 

 (13) 
 

should be minimal. In addition, the following 
normalization condition for N(L) must be satisfied:  
 

 (14) 
 

Finally, the form of N(L) should permit the analytic 
integration of Eq. (12). Function N(L) is sought in 
the form: 
 

 (15) 
 

where x1 and x2 are constants determined by 
minimization of . Note that x1 is a dimensionless 
quantity, and x2 is in microns. 

Integration of Eq. (12), using Eq. (4), gives 
 

 (16) 
 

where 
 

 (17) 
 

Substituting Eqs. (16) and (10) into Eq. (6), we 
finally obtain for the attenuation coefficient 
 

 (18) 
 

The parameters x1 and x2 determined by 
minimization of  by the pattern search method5 are 
listed in Table 1. These values are in one-to-one 
correspondence with the assigned parameters  and am. 
Substitution of different pairs of values of x1 and x2 

from Table 1 into Eq. (17) with subsequent analysis 
readily shows that all the terms for P in Eq. (17) 
vanish in the visible part of the optical region. 
Therefore, in this frequency interval the attenuation 
coefficient  = D exhibits neutral behavior with respect 
to . It follows from Eq. (17) that with the wavelength 
increase the value of P grows ever so slightly, remaining 
fairly small. However, it cannot be regarded as 
approaching zero at IR frequencies and is there 
determined by the first term only, the other terms being 
negligible. This means that in this frequency interval 
reflections within a crystal can be ignored. As a result, 
the attenuation coefficient in the IR range is related to 
the parameters of the proposed polydisperse model 
through the following simple expression 
 

TABLE 1. 
 

Constants x1 (upper row) and x2 (lower row) 
determined from Eq. (15) by minimization of 
expression (13) by the pattern search method for 

–41.31 10 .n i    
 

 
 

 (19) 
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It can be readily seen that Eq. (19) also implies the 
limiting case, where n = 1, æ = 0 and 0.     
 

TABLE 2. 
 

Comparative analysis of the attenuation 
coefficients obtained by exact calculations and 
our analytic approximation for –41.31 10 .n i    

 

 
 

The attenuation coefficients  and   calculated 
by Eqs. (3) and (19), respectively, are summarized in  

Table 2 for different IR wavelengths. The integral in 
coefficient calculated by Eq. (19) does not exceed 
2.5%. Note that numerical integration of rapidly 
oscillating functions over wide limits is a rather 
complicated computational problem. Therefore the 
equation for the attenuation coefficient obtained in 
this paper (Eq. (19)) is simple not only from the point 
of view of analysis but it also facilitates computer 
calculation. It should be pointed out in conclusion that 
the attenuation cross-section due to plate is only 
weakly dependent on the incident polarization state3. 
In addition, the value of the attenuation cross-section 
changes but Eq. (3) was computed numerically. It 
follows from an analysis of Table 2 that the error in 
the attenuation slightly as the angle of incidence varies 
from 0° (normal incidence) up to 7–10°. Hence, 
Eq. (19) allows for generalization to the real case of 
the preferred orientation of crystal plates in a 
polydisperse medium where every plate oscillates near 
some equilibrium position in the air flow. 
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