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This paper presents results of experiments on irradiation of airmolecules with 
second-harmonic radiation from a Nd–YAG laser operating simultaneously at the two 
wavelengths of the two longitudinal modes. About 750 lines in the emission spectrum 
of excited molecules in the region 0.198 to 0.394 m were recorded. These lines are due 
to transitions between excited electron states of N2 molecules as well as of the 
molecular ions 2N  and 2O   and the ionized atoms N+ and O+. In this paper it is shown 
that the effect can only be observed in the case of irradiation by a biharmonic field of 
a medium which contain molecules with rotational energy levels, where the difference 
between the energies of the biharmonic pump waves is in resonance with the energy of 
the rotational states of the molecules of the medium. 

Interpretation of the experimental results is based on a qualitative analysis of the 
differential equations of motion. On the basis of our analysis we conclude that there 
exists a stationary point of "center" type and a limit cycle with "screwing" trajectories 
on it (independent of their initial conditions). As a consequence, a rigid rotor placed 
in a biharmonic resonant (at the difference frequency) field can be considered as a 
synenergistic system. 

 

 
EXPERIMENT,1,2,3 AND THE IDEA  

OF ITS INTERPRETATION 
 

A biharmonic field with the wavelengths 
1 = 0.5275 m and 2 = 0.5277 m (the second 
harmonic of a pulsed Nd–YAG laser with selection 
of two longitudinal modes and pulse duration of 
nearly 25 nsec) focused in air initiates a great variety 
of frequencies as shown in Fig. 1: 750 lines were 
found within the limits of the recording range from 
0.198 to 0.394 m. This effect occurs only under the 
following conditions: a biharmonic field and a 
molecular medium with rotational states (the effect 
disappears when one of the frequencies is removed or 
when the molecular gas is replaced by an atomic 
one). The field frequency difference turns out to be 
between the rotational numbers j = 1 and j = 2 of 
the O2 and N2 molecules, dramatic importance for 
the interpretation. 

Figure 1 testifies to the extremely "broadband" 
character of the excitation, and shows lines of the 
excited electron states of N2 molecules, 2N  and  

2O  ions, and the ionized atoms N+ and O+ (charged 
particles are directly recorded during  
special experiments). All the frequencies of these 
formations within the interval 0.198–0.394 m are 
included here. 
 

   

 
 

FIG. 1. Spectrum of the excited electron states of 
N2 molecules, 2N  and 2O   ions and the ionized 
atoms N+ and O+. The recording range extends 
from within 0.198 m to 0.394 m (The most 
striking part of this range is shown). 

 
These events, however, occur with an extremely 

low threshold when the field intensity in the focus is 
approximately equal to 104–105 V/cm. For example, 
10-photon absorption of optical-frequency radiation is 
required for ionization of N2. This is a process the 
probability of which is insignificant in a field with this 
intensity. There is one more very essential point — the 
coherence of the resulting field, i.e., the radiation of 
all the frequencies which are shown in Fig. 1 is 
concentrated "foreward" of the direction of 
propagation of the external wave. 

Such a combination forces us either "to play a 
very clumsy game of patience" with already known 
nonlinear phenomena (see Ref. 2) or to search for a 
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version which sufficiently "minimizes" the 
interpretation of the phenomenon. The starting 
element of this process is quite similar to ASCS  
theory4: the optical field induces an electron dipole 
moment (in what follows a will denote the 
corresponding polarizability), and, continuing to 
interact with the field, it contributes a potential 
energy to the rotor (the usual rotational model of a 
two-atom molecule) V = –U2 sin cos (see 
Ref. 5). The angles  and  are shown in Fig. 2. For 
the biharmonic field 
U = U1exp(–i1t) + U2 exp(–i2t) + c.c.,  
where t denotes time. Íåãå 1 and 2 are the frequencies, 
U1 and U2 are the amplitudes of the two components, 
and both fields are linearly and equally polarized. 

It becomes clear that the harmonic with frequency 
1 – 2 appears in U2, and can be compensated for by 
combinations of exp[i(± (t) ± (t))] in the equations 
of motion that are explicitly present in the 
expression for V. If one of the values 
±(1 – 2)t ± (t) ± (t) is approximately equal to 
zero, then the rotation energy at once becomes 
proportional to t with all the "cumulative" 
consequences. 
 

 
 

FIG. 2. Rapid rotor states before and after the 
field is turned on. 00’ denotes the rotor axis, (a) 
is any state of the rotor (before the field is turned 
on), (b) corresponds to the limit cycle, M denotes 
the momentum of state (b). The laboratory system 
(1, 2, 3) is associated with the external field; E, H 
and S are the intensities of the electric and 
magnetic fields and Poynting’s vector, respectively. 

 
This picture, of course, is evoked by premises of 

the very appearance of the phenomenon (see the 
description of the experiment). It is also clear that the 
"resonance" must be determined by the condition 
±(1 – 2) ± d/dt ± d/dt = 0 with arbitrary 
combination of signs. Finally, there is no need to 
quantize the rotor motion because the rotational 
spectrum is not yet obligatory. 
 

CLASSICAL ROTATOR WITH POTENTIAL 
 

The Hamiltonian equations of motion 
 

 
 (1) 

 
 
with moment of inertia I (P and P are the momenta 
canonically conjugate to  and ) are supplemented by 
equations the for angular velocity components in a 
moving coordinate system: 
 

 
 

 (2) 
 

 
 
As usual, OO (Fig. 2) denotes the third axis of the 
moving coordinate system,  is the third (besides  and 
) Euler angle (mathematically,  is eliminated by the 
last equation from Eq. (2)). Until the field is 
turned,on, the rotor undergoes uniform rotation with 
frequency : 
 

 (3) 
 
which determines the initial conditions for Eq. (1). 
The traditional scheme6,7 of qualitative analysis of Eq. 
(1) must be preceded by a remark on the introduction 
of a stationary point according to the conditions 
 

 (4) 
 

instead of the usual approach of setting the derivatives 
with respect to t equal to zero. Actually, when 

0,      Eq. (2) corresponds to the completely 
nonphysical situation of the stopping of the rotor. 
Equations (3) testify to its uniform rotation by virtue 
of the meaning of P and P. The only opportunity to 
satisfy Eq. (4) (for arbitrary t) is afforded by 
 

 = /2,  = 0. (5) 
 

Of course, the obvious reassignments 
(  (1)) + (t), etc.) underline the mathematical 
triviality of Eq. (4). However, the values of the 
constants in Eq. (4) are of decisive importance for 
the physical validity of the version under discussion. 
It is an asymptotic trick (neither theory nor 
"approach") that is the basis here. The initial exact 
expressions will be 
 

 (6) 
 

 
 

 (7) 
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where f(t) = (/I)U2(t). Equation (6), which 
represents the integral of the equations of motion [Eqs. 
(1)] must be written first in the Lagrangian form:  
 

2 sin cos cos ,f        
 

2sin 2 sin cos sin sin .f           
 

Equation (7) describes the energy conservation, law 
(obtained by integrating (1/I)dH/dt, where the energy 
 

           2 2 2 2 2
1 2(1/ 2)( sin ) (1/ 2)( ),H V V  

 

taking into account initial conditions (3). 
Then, substituting Eq. (5) into the left-hand 

sides of Eqs. (6) and (7), we obtain 

0

( ) sin ( ) sin ( ).
t

dt f t t t         Next, let us replace 

the second term in Eq. (7) by 2.  Here, taking Eq. 
(3) into account, it is possible to appeal to the mean 
value theorem. The expression which results is 
interpreted as an integral equation for , and the 
nonzero initial condition (see Eqs. (3)) enables us to 
solve it by means of an iterative procedure. Naturally, 
we will restrict ourselves to the first step (in the 
integral    ). Finally, we obtain 
 

 
 
This expression gives rise to a suspicion bordering on a 

confidence that (1) (2) ( ).O          It is 

also clear that the formal expression at t   
corresponds to the stationary point (5) and that Eqs. 
(4) mean that " > (2)(t) and  > (1)(t) at large t". 

Coming back to the explanation of the resonance 
(see the end of Sect. 1), we see that the resonance 
condition becomes 
 

 (8) 
 

The rule of asymptotic estimates of the 
Fourier-type integrals8 (i.e. the possibility of treating 
the integrand functions just at large t) and Abel’s 
theorem9 formalize the calculation of the limit at 
t  . There appears a series of -functions of which 
naturally only that one which corresponds to a 
resonance of the type given by Eq. (8) will remain. 

This situation requires a heuristic step, which 
being the substitution of the function  for the 
resonance width  given by Eq. (8). This procedure, of 
course, excludes indeterminate values of (1) and (2) 
from the integrals, but it raises the problem of . Its 
physical content is to remove the singularity from the 
energy conservation law (corresponding to Eq. (7)). 
"Noise" is necessary as "a retarding factor" for a finite 
energy to appear under the resonance conditions. This 
situation is typical in synergetics.7 With the latter we 

have, in fact, determined the conditions of existence of 
the stationary point. 

The analysis carried out according to these "rules 
of the game" yields 
 

 
 

 (9) 
 
where the complex number U1*U2 is equal to 
bexp(i). Now it is possible to elucidate the character 
of the stationary point in Eq. (5). The dependence of 
f on t introduces some atypicality; therefore it is better 
to use the Lagrangian form, which yields 

(1)2( ) ,x f x     (1) (2)2 x f       in the vicinity 

of the stationary point (5) (x =  – /2). Going over 
to the integral equations, we see the asymptotic 
smallness of the integral terms, and there then remain 
only "vibrational" expressions, which indicates that 
Eq. (5) represents a point of "center" type. 

Moreover, there exists a limit cycle with 
"screwing" trajectories on it independent of their 
initial conditions, and the proof of this fact coincides 
with the example from Ref. 6. From the geometric 
point of view the limit cycle shown in Fig. 2b 
represents rotation at the frequencies (1) and (2) 
given by Eq. (9) around the cone whose vertex angle 
is O(I2/). Any rotor, independent of its initial 
state (before the field is turned on, see Fig. 2a), will 
be in the position shown in Fig. 2b. 

An analogous procedure for the equations in Euler 
form 
 

 
 

 
 

enables us to find the direction M (see Fig. 2) in the 
limit cycle. If we suppose that after the field is turned 
off the molecule becomes free of an anomalous large M 
by spontaneous emission of radiation, then it will be 
directed only along S (E is concentrated along the 
rotor axis and the final momentum of the molecule is 
much less than M) because of momentum 
conservation. In this way we explain the coherence 
that was discussed in Sect. 1. 

In the above analysis the following synergetic 
aspects are important. First there is the nonlinearity of 
problem (1) (here specifically the radical difference 
from the analogous problem of ASCS), which leads to 
a change (as compared to the linear version) of the role 
of the external field and acts as a "trigger," mobilizing 
the internal resources of the nonlinear system (in the 
linear case this role is played by the main dynamic 
factor). The problem of resonance appears to be 
different — see the last paragraph in Section 1 and the 
discussions of Eqs. (6) and (7) (for example, it 
obviously differs from the resonance of an oscillator 
under the influence of an external periodic force).  



376  Atmos. Oceanic Opt.  /May  1989/  Vol. 2,  No. 5 A.V. En’shin and S.D. Tvorogov 
 

 

Finally, the existence of "noise" appears to be a matter 
of principle. It is a central point for the 
self-organization of the steady state (b) shown in 
Fig. 2. Actually, the extremely low threshold of the 
effect is due to these very factors, i.e., at values of ó 
corresponding to the Doppler effect (see Sect. 3) and 
fields in the range  104–105 V/cm the value of  from 
Eqs. (9) is equal to 107 cm–1 (for N2 and O2, and the 
corresponding rotational energy significantly exceeds 
not only the electron levels but also the dissociation and 
ionization levels of nitrogen and oxygen. 
 

RESONANCE (8), ITS WIDTH, AND 
POPULATION OF STATES 

 
Here other aspects of the physical picture of the 

phenomenon will be discussed on a strictly qualitative 
level. The content of Sect. 2 constitutes the main 
element of the interpretation. 
 

 
 

FIG. 3. Rotor motion towards the limit cycle in 
phase space. The "well" corresponds to a stationary 
electron-rotational state;     schematically 
represents the rotor trajectory "screwing" into the 
limit cycle (see Sect. 2);  denotes the motion due 
to the electron-rotational interaction. The limit 
cycle energy is estimated at the end of Sect. 2. 

 

The initial appearance of resonance (8) is easily 
interpreted as occurring during the process of a 
molecular collision, because a collision is sufficient to 
induce a transition between rotational states and the 
classical background of centers of mass continuously 
"fills" the gaps between the quantum levels. Of 
necessity, we estimate the probability of the exact 
fulfillment of conditions (8) in a simplified way. Since 
we are talking about an individual collision, referring 
to the theory of spectral line shapes (see, e.g. , 
Ref. 10), it is possible as a completely acceptable 
hypothesis to take as the value of  the Doppler 
halfwidth (the natural halfwidth is negligible for the 
rotational frequency). 

The next point, to which the diagram in Fig. 3 is 
related, should explain the picture of the broadband 
excitation (see Sect. 1). The electron-rotational 
interaction, which is quite insignificant under normal 
conditions, will also play a role for very energetic 
rotation. Of the corresponding terms of the exact 
Hamiltonian,11 at the stationary point (S) the term 

  2
ˆˆ ( / ) /ihL I d d  can be retained, where 2

^
L  is the 

electron momentum operator (for the molecular 
system). The operator ̂  acts as the cause of the 
nonradiative transition, causing the rotor to "turn 
away" from the limit cycle into a "well" (see Fig. 3). 
It is clear that all the states, whose energy lies below 
the energy level of the limit cycle, are populated. 

There are no difficulties in posing the question of 
the probability of subsequent spontaneous emission. 
But this discussion is not likely to be constructive 
because the behavior of the molecule at very large 
rotational quantum numbers is not one of the solved 
problems of molecular spectroscopy. However one 
detail is worth noting. Granted that in the scheme in 
Fig. 3 there is not one single conceivable possibility of 
excitation and "luminescence". But the total 
probability is proportional to the external field 
intensity. This calculation is based on the assumption 
that the rotational wave function is equal to 

(cos ) exp( ).P i
     Here (cos )P

   is the Legendre 
function, and v corresponds to the rotational energy 
with frequencies given by Eq. (9). This function 
reproduces case (b) in Fig. 2 (which enables one to 
refer to the method of semiclassical representation,12 
while proceeding from the classical description given 
in Sect. 2 to the modern quantum description), and 
satisfies the Scrödinger equation of the rigid rotor. 
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