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Approaches to the solution of the problems of vision theory are studied, and methods 
for measuring and calculating the linear-systems characteristics describing the transfer of 
an image through scattering media are reviewed. Some questions regarding the 
application of the Monte-Carlo method in problems of seeing through scattering media 
are discussed. An interpretation is proposed for some experimentally observed distortions 
of images by the medium. 

 
 

In the theory of vision a number of approaches are 
being developed for studying the effect of scattering 
media on the quality of images of objects observed 
through such media. In one group of works1–9 the 
general tendencies are established based on analysis of 
the characteristics of images of specific extended test 
objects. In Refs. 4, 6, and 9–23 some systems 
characteristics of the image transfer process, in terms of 
which the solution of particular problems can be 
expressed, are determined and investigated. Among 
these approaches we call attention to the method of 
spatial-frequency characteristics,16–21 the linear-system 
approach,14,25,24,22 and the method of Green’s 
functions7,9,12,13.15.23.26,28 (the last two approaches are 
essentially equivalent, if some features24 of the 
mechanism by which an image is formed by optical 
devices are ignored in the solution). 

In vision theory the approximation of 
lowest-order scattering,29,30,34 the small-angle 
approximation and its modifications, the method of 
iteration over the orders of scattering with integration 
over the characteristics,16,21 the two-flux and other 
approximations1–6,11 and simulation modeling by the 
Monte-Carlo method4,8,9,14,22–28,31–36 are widely 
employed for solving the transfer equation. 

Laboratory and field experiments35,37–46,49 not 
only supplement or confirm38,39,42,44,49 existing results 
but they also generate new results (for example, the 
t-effect35,46) which lead to more fundamental 
understanding of the theoretical results and stimulate 
special investigations.33,44 

Investigators are interested in different aspects of 
the problem of the distorting effect of the scattering 
medium on an image: the effect of the medium on the 
image contrast,1–8,29,47,48 the spatial resolution10,11,33,51, 
and the color characteristics of the image.9,29 The 
dependence of image quality on the spatial structure of 
the object (half-plane, small objects, groups of small 
objects, rings, etc.) and the reflection properties of the 
object (for example, nonlambertian nature of the 
surface) are studied in Refs. 5, 7, 8, 19, 23, and 26. The 

combined effect of the medium, the structure of objects, 
and the characteristics of the optical systems on the 
image is analyzed in Refs. 10, 23, and 47. The reaction 
of the pulsed characteristics of vision systems to some 
features of the image formation mechanism of optical 
receivers is studied in Ref. 24. 

In this paper the linear-systems approach to the 
solution of the problems of vision theory and the 
application of the Monte-Carlo method for modeling the 
systems characteristics determining the process of image 
transfer through scattering media is studied. An 
interpretation of some experimentally observed 
distortions of the image by the medium is proposed in 
the Appendices. 
 

STATEMENT OF THE PROBLEM 
 

Let the object plane be the XOY plane of a 
Cartesian coordinate system (Fig. 1) and assume that it 
is characterized by the reflection coefficients (or albedo) 
( , ),s m


 where 


 is the radius vector of a point in the 

XOY plane and m


 is a unit directional vector 

( m  


). The object plane is illuminated through a 
scattering medium (bounded by the planes z = z1  0 
and z = z2 > 0) by a source of incoherent radiation, 
which forms a flux of parallel rays, as shown in Fig. 1. 
 

 
 

FIG. 1. The geometric diagram of the condition of 
observation. 
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A linear detector, which forms the image, is 
positioned at the point Ì(õM, yM, zM). The 
horizontally uniform medium is characterized by the 
standard collection of optical characteristics appearing 
in the radiation transfer equation describing the 
propagation of short-wavelength radiation in turbid 
media. 

We shall call the distribution of the reflection 
coefficient ( , )s m


 or the intensity (or brightness) 

( , )I m


 at the level z = 0 the observed object: 
 

 (1) 
 

where ( )E 


 is the intensity of illumination of the 
object plane. 

We shall call the distribution of intensity 
(brightness) ( , )I rm n

 
 at the point of reception M, 

where n

 is a unit directional vector, the image of the 

object. In the case of projective optical systems the 
point M is fixed, ,n  


 i.e., the vector n


 varies 

within the visual field or the field of view (in the case of 
scanning systems) of the optical receiver. If the image is 
formed by the method of spatial scanning, then to 
construct the image it is sufficient to know M( , ),I r n

 
 

for a given region M Mr R


 for a fixed value of .n


 
Thus the direct problem of the theory of vision 

reduces to solving the following equation of the theory 
of radiation transfer: 
 

 
 

 (2) 
 

under the boundary conditions 
 

 (3) 
 

where 
 

 
 

are the attenuation coefficient, the scattering 
coefficient, and the scattering phase function, 
respectively: S is the solar constant; and, 1,2n


 are the 

outward normals to the plane z = z1,2. 
Analysis of the processes accompanying the 

transfer of an image through scattering media 
shows9,23,25,52 that the problem (2) and (3) can be 
replaced by a collection of simpler (and previously 
well-known) problems of the theory of radiation 
transfer. Application of the apparatus of the theory of 
analysis of linear systems makes it possible to solve the 
problem (2) and (3) in a more general form irrespective 
of the form of the functions ( , ),s m


 if the object 

plane is uniform, i.e., 1 2( , ) ( ) ( ) :s m s s m  
  

 
 

 
 

We shall divide the process of image formation 
into the following stages. 

1. The formation of light haze Ih owing to the 
scattering of photons, which have not interacted with 
the object plane (the ties 1–2 in Fig. 2a), toward the 
receiver. In the case of illumination by sunlight the 
boundary conditions for determining I from Eq. (2) are 
 

 (4) 
 

 
a 

 

 
b 

 

 
c 

 
FIG. 2. Block diagram of the process of image 
transfer through a scattering medium. 

 
2. The formation of the brightness structure of 

the object (the input signal). In Fig. 2a and b this 
process corresponds to the ties 1–3–4–5. It includes 
the following steps: 

a) illumination of the object , by directly 
transmitted and diffusely scattered radiation from the 
source (ties 1–3); 
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b) additional (and in the general case nonuniform 
over the XOY-plane) illumination arising as a result of 
scattering of reflected (including multiply reflected) 
photons toward the object plane (ties 3–4). 

3. The propagation of the formed input signal 
through the scattering medium (Fig. 2c). 

The problem of 2a above corresponds to Eq. (2) 
and the conditions (4). The problems 2b and 3 are best 
solved by using the linearity of the transfer equation 
with respect to the intensity. This makes it possible to 
regard the "scattering medium" blocks (Fig. 2) as 
some linear systems (in particular, in Fig. 2b, with 
feedback). The methods for analyzing systems are well 
known. To construct the response of such a system to 
any perturbation (in this case two-dimensional) I(x, y) 
it is sufficient to know its response to a special input 
signal (in this case to a spatial -function pulse). Once 
the unit-pulse response h(x, ó) has been determined the 
response of the system I(x, y) can be written in the form 
of a convolution integral: 
 

 (5) 
 

The expression (5) can be derived based on the general 
principles for constructing the solutions of differential 
equations by the method of Green’s functions. 

In Refs. 16–19 it is proposed that Eq. (2) be 
regarded under the conditions (3) as an equation with 
perturbed boundary conditions (in the parameter 
( , )s m


). It is shown in Ref. 17 that there is a unique 

correspondence between the solutions obtained using 
this approach and the solutions which are formed 
based on the linear-systems approach in terms of the 
corresponding unit-pulse response functions hh() 
(Fig. 2c) and hE() (Fig. 2b). These functions can be 
found by solving Eq. (2) under the boundary conditions 
 

 (6) 
 

The function hh() characterizes the so-called 
interference due to lateral illumination. To construct 
the brightness image of the object at the level z = 0 
taking feedback (re-reflection) into account the 
following iteration process must be performed:9 
 

 
 

 (7) 
 

 (8) 
 

The function h( , ; )h x y n


 for the problem 2b is 

determined for z = z2 and 0n n
 

 and the ray along 

the direction 0n


 crosses the plane at the point M0 with 

the coordinates 0 0( , )x y
 

 (to simplify the notation in 

what follows the minus sign in front of the vector n

 in 

the functions h ( , ; )h I x y n


 is dropped). For the 

problem 3 the solution is sought on the plane z = 0. It 
is obvious that 
 

 (9) 
 
corresponds to the operator T22 in Ref. 23 and 
characterizes the probability of rereflection or the 
feedback gain (Fig. 2b). The quantity 
 

 (10) 
 
called in Ref. 34 the integral (total) lateral 
illumination, corresponds to the operator T23 in Ref. 23. 

The background illumination owing to reflection, 
rereflection, and scattering, taking into account 
Eqs. (7)–(10) for a uniform Lambertian surface 
( ( , ; ) consts x y m s 

 
), assumes the form 

 

 (11) 
 
Then the total signal is 
 

 
 

 
 

 (11) 
 
where 0 is the optical thickness of the layer, and 0 and 
1 are the cosines of the angles between the OZ axis 
(Fig. 1) and the direction toward the source and the 
receiver from the point (x0, ó0). The theorem of optical 
reciprocity is employed in the derivation of Eq. (11). 

An expression analogous to Eq. (11) was derived 
in Ref. 17 in the solution of a boundary-value problem 
with perturbed boundary conditions. Obviously  is 
the spherical albedo (in Ref. 17 c0 for a medium 
illuminated from below by diffuse radiation) and  
characterizes the transmission by a medium taking into 
account the horizontal diffusion of photons reflected 
from XOY plane (the function 0( , )W z s


 in Ref. 17). 

Following the terminology of the theory of linear 
systems the Fourier transforms of the functions hh() 
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and hE() in the frequency domain are called, by 
definition, the transfer functions. 

Using Eqs. (7) and (8) for objects with arbitrary 
( , ; )s x y m


 we can write 

 

 
 

 
 

 

 s   
 

 hs  (12) 
 
where E(x, y) = E0 + E(x, y), E0 is the uniform 
intensity of illumination of the plane XOY (neglecting 
reflections), and E(õ, ó) is in the general case the 
nonuniform illumination (taking into account 
rereflections) 
 

 
 

 

  
 

 (13) 
 

Thus the direct problem of the theory of vision for 
the conditions examined above has been solved, if the 
two constants (E; Ih) and the two unit-pulse response 
functions or the point-spread functions 0h( , ; ),h x y n


 

hE(x, y) have been found for an isolated scattering 
medium with no reflecting surfaces. Similar results 
and conclusions were obtained in Refs. 16–18 in the 
solution of the corresponding problem of the theory of 
transfer with perturbed boundary conditions. 

We shall now reformulate the problem. Assume 
that the objects are not illuminated by a source and that 
the observed objects are luminous (nighttime viewing 
conditions). Then the point-spread functions 

0h( , ; )h x y n


 (PSF) or the optical transfer function of 
the medium (OTF) (the Fourier transform of 

0( , ; )h x y n


 completely describes the process of image 

transfer in the direction 0n


 in turbid media. Since this 
cannot be said about the general formulation of the 
problem we must evidently follow Ref. 17, where it is 
pointed out that the term "optical transfer function of 
the atmosphere" is not correct in this case, when the 
process of distortion of the image is more complicated 
and is now determined by a collection of characteristics 
(E, Ih, hh()), hE(), or (E0, Ih, , ) (in some cases 
the values of E0 can be equal to , if the unscattered 
component is excluded from E0). We note that even 
when luminous objects are being observed the values of 
the PST for one direction 0n


 may not be sufficient in 

order to construct the image correctly. This Situation 

evidently occurs when the receiver consists of an optical 
system which transforms the angular distribution of the 
intensity ( )I n


 at the point M (Fig. 1) into a flat image 

G(x, y) (here *,n  


 where *


 is the visual field of 
the receiving system). In this case in order to construct 
the image it is necessary to determine h( , ; )h x y n


 for 

each direction * .n  


 In the theory of optical 
systems52 the concept of isoplanarity is introduced in 
order to solve an analogous problem. The image plane or 
the visual field of the receiver is divided into the regions 

1 2 n... ,       
   

 within which in constructing 

the image only the function h( , ; )h x y n


 i i,n  


 

1,i n  need be employed. 

The region 


 can be divided into zones of 
isoplanarity i


 by different methods. One such 

method, for example, is based on comparing the 
brightness image of a point source 0 i( , ; )I x y n


 with 

the unit-pulse response ih( , ; ).h x y n


 We shall assume 

that ihi h( , ; ) ( , ; ),h x y n h x y n
 

 i,n


 i,n  


 if 
 

 (14) 
 

or 
 

 (15) 
 

where 
 

 
 

In other words the separation is performed so that by 
using the unit-pulse response ih( , ; )h x y n


 it would be 

possible to construct within the i-th isozone an image 
of a point object or to determine the intensity of 
illumination created by it within this zone with fixed 
accuracies  (in Eq. (14)) or  (in Eq. (15)). 

We call attention here to the fact that if the 
definition of isoplanarity is to be preserved the concept 
of foreshortening invariance introduced in Ref. 53 
cannot be employed to determine the dimensions of the 
isozones. In Ref. 15 it is pointed out that the image can 
remain isoplanar even if the condition of foreshortening 
invariance of the medium is not satisfied. 

The clear physical meaning of the unit-pulse 
response function ih( , ; )h x y n


 simplifies the planning of 

the corresponding experimental investigations. Thus 
existing methods for measuring the responses hh() and 
the problems involved in organizing these studies are 
studied in Ref. 37 with the help of numerical and 
laboratory modeling. The central problem is to measure 
the wings of the PSF. 
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A variant of a new method which combines 
measurement of the unit-pulse response functions with 
the additional determination of the unit-pulse response 
function for large values of the argument, for which it 
is determined based on approximation of the results of 
numerical computer experiments, is proposed in 
Ref. 36. We note that together with measurement of 
the unit-pulse response functions8,34,37,38,39 attempts 
have been made40 to measure the optical transfer 
functions F(hh()) in laboratory experiments. Even in 
this case, however, the problem of taking into account 
the effect of lateral illumination from remote regions 
of the object plane on the OTF cannot be avoided. 

The method of angular scanning with 
determination of the spread function of a point, line, 
or boundary curve, i.e., the function 0 i( , ; )I x y n


 (in 

the case of the PSF) in Eq. (14), is widely employed in 
laboratory and field experiments on the theory of 
vision (as done in some early theoretical works). This 
is probably a result of transferring the definition of the 
unit-pulse response from the theory of optical systems, 
where the PSF is the diffraction image of a point 
source, directly to the theory of vision. For optical 
systems this definition of the PSF is admissable 
because its half-width is very small; in vision systems, 
however, in the general case this condition is not 
satisfied. It is shown in Ref. 37 that the approximate 
method for measuring unit-pulse responses (angular 
scanning) is applicable only in a limited range. 
Outside this range the relative errors in measuring the 
PSF can exceed 100%, especially when layers with 
high turbidity, not adjoining the object plane, are 
present in the observation path. The accuracy of such 
measurements decreases on the wings of the point 
(line) spread function. 

In Refs. 34 and 36 attention is drawn to two 
properties of the function hh(), which can be employed 
to improve the efficiency of laboratory experiments on 
the influence of optical geometrical conditions of 
observation through turbid layers on hh(). The first 
property, which follows from the principle of 
geometric similarity, is formulated as follows (to 
simplify the notation we confine our attention to the 
case of vertical observation in Fig. 1, when 

hh(x, y) = hh(); 
2 2 :x y    

 

s 1 0 1 s( , ) (0, ) ( ),h z h z h    (16) 
 

where  = arctg(2/(z1 + z2)), i.e., for any , (1)
1 ,z  (2)

1z  
and fixed geometric thickness of one layer 
 

 
 

The second property consists of the fact that the 
functions hh() (for   15°) are virtually independent 
of the scattering properties of the medium (scattering 
phase function) and the geometric thickness of the 
layer, and can be approximated adequately (with an 

accuracy  20%) by the function 
 

 (17) 
 
where 0 = 15 and x is the optical thickness of the 
medium. 

The property (16) makes it possible to limit 
significantly the number of measurements in studying 
the effect of the distance zi to the layer on the function 

ih( , ; ),h x y n


 while the property (17) makes it possible 
to complete the determinationof the wings of the 
unit-pulse function, which, as a rule, cannot be 
measured in the experiments. We stress that these 
measurements give the PSF of the vision system as a 
whole, i.e., taking into account the optical system. 
Methods for eliminating its effect on the measurements 
are traditional, and this is most simply done by 
assuming that the optical receiver is linear. 
 

SIMULATION MODELING OF THE 
CHARACTERISTICS E, Ih, hh, , hE,  

 
Thus by solving Eq. (2) under the condition (4) it 

is possible to find the characteristics Ih and E under 
the condition (5) the functions hh(), hE() and the 
parameters , . The methods developed for solving 
this equation with the boundary condition (4) make it 
possible to determine the intensity of the light haze Ih 
and the intensity of illumination E without any 
restrictions on the optical characteristics of the 
medium, including for the case when the geometry of 
the problem is spherical. This can be done by 
approximate4,5,15 and exact9,23,26 methods for solving 
the transfer equation. 

It is more difficult to solve Eq. (2) for the 
unit-pulse response functions hh(), hE(). The basic 
results of investigations of the unit pulse responses hh() 
and the characteristics ,  correspond to the 
assumption that 1 2( , ) ( ) ( ) ( )s m s s m s     

   
 i.e., that 

the object plane is Lambertian. To determine the 
unit-pulse response hh() and the integral illumination  
in this case, among approximate methods, the 
approximation of the lowest orders of scattering34 and 
the small-angle approximation7,12 are most often 
employed. There is virtually no published information 
on the function hE() and the parameter , even with 

2( ) const.s m 


 There are only several works (for 
example, Refs. 6 and 19) where approaches to solving 
Eq. (2) under the condition 


2( ) consts m  are 

proposed. 
All these problems are eliminated by including 

the Monte-Carlo method in the linear-systems 
approach to the problems of the theory' of vision. It is 
possible to construct quite efficient algorithms for 
modeling all characteristics determining image 
transfer in turbid media (Ih, E, , hh(), , hE()) 
(Refs. 9, 22–28, 31, 54). 

Statistical modeling of the linear-systems 
characteristics can be performed for any functions 
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2 ,s m


 given analytically or tabulated on a uniform or 
plecewise-uniform object plane; a solution can be 
obtained with controllable accuracy and it is possible 
to take into account correctly multiple scattering as 
well as some features of the formation of flat images of 
three-dimensional objects by optical systems (i.e., the 
function hh() and the characteristics Ih and  can be 
calculated both taking into account and neglecting the 
effect of the optical system24). The implementation of 
the algorithms of the method on fast computers 
(including, for example, on parallel computing 
systems with overall control by a PS-2000 processor) 
makes it possible to reduce the labor involved in the 
calculations. Since the labor intensiveness is the main 
(and often the only) drawback of the method the 
works directed toward searching for or choosing the 
most efficient algorithms for calculating the 
characteristics of the image transfer process deserve 
attention.22–28,31,54 For example, in Ref. 54 the 
amount of computation involved in calculating the 
characteristics , and hh() for the case 2( ) const,s m 


 

by direct modeling is compared with that of the 
method of local computation. The calculations showed 
that it is more efficient to use specially constructed 
algorithms for evaluating  than it is to calculate the 
functions hh() first and then to integrate Eq. (10) 
numerically. In turns out that  can be calculated with 
the help of a direct-modeling algorithm in the scheme of 
conjugate random walks. The functions hh() are best 
modeled with the help of a local algorithm on conjugate 
trajectories. The local estimate in this case has the form54 

 

 
 
where  is the photon survival probability and 

( ) ;r  


 i is number of the trajectory; k is the 
number of the collisions; i,k is the optical path length 
rik from the k-th collision point to the "reception" 
point; i,k is the scattering angle; and, I,k is the cosine 
of the angle between the inward normal of the layer 
and the segment .ri,k. The estimate I,k determines the 
probability that a photon will traverse the segment i,k. 

The characteristics  and hE() can be determined 
by constructing an algorithm for modeling the process 
of propagation of radiation with a fixed radiation 
pattern 2( )s m


 from a point source. The average 

number of trajectories crossing the object plane gives 
an estimate of , while the distribution of these 
crossings over the plane gives the function hE(). The 
functions hE() can also be calculated by the method of 
local computation. 

When the Monte-Carlo algorithms are 
implemented on parallel computing systems of the 
PS-type each branch of the calculation must be 
provided with a pseudorandom sequence of numbers 
distributed uniformly in the interval [0, 1], and in 
addition the condition that the numerical sequences in 
the different branches be uncorrelated must be 
satisfied (if this condition is not incorporated in the 

formulation of the problem). The second problem is 
related with the problem of activation of the processor 
elements. The characteristics of the statistical 
modeling algorithms do not permit full use of the 
computational possibilities of parallel systems. Thus, 
for example, experience in simulation modeling of the 
characteristics  and  on the PC-2000 system shows 
that the efficiency of using 32 processor elements 
simultaneously is of the order of 20–30%. This,_ 
however, turns out to be sufficient to reduce 
substantially (by a factor of 3 to 5) the amount of 
computation as compared with the calculations 
performed on single-processor BESM-6 computers. 

In developing simulation algorithms the 
importance of determining the wings of the unit-pulse 
responses in order to analyze correctly the effect of the 
conditions of observation on the image transfer process 
in turbid media must be taken into account. It is shown 
in Ref. 7 that neglecting the wings can result in 
distortion not only of the quantitative but also the 
qualitative dependences, for example, of the OTF 
(F[hh()]), on the optical and geometric parameters 
and the characteristics of the observation schemes. 
This remark can serve as an additional argument in 
support of local computational methods in the scheme 
of conjugate random walks for modeling the unit-pulse 
responses hh(), hE() (Refs. 9 and 54). 

References 26–28 and 31, where algorithms are 
proposed for calculating the OTF (F(hh()], and works 
where the Monte-Carlo algorithms which make it 
possible to take into account the characteristics of 
image formation by optical systems, i.e., to model the 
characteristics Ih, Hh(), and  for vision systems (it is 
obvious that E, HE(), and  do not depend on the 
optical systems), illustrate the universal possibilities 
of the methods of simulation modeling in the theory of 
vision. In Ref. 55 an algorithm is proposed for 
modeling the propagation of radiation through all the 
constructional elements of an optical system. In 
Ref. 24 methods are proposed for taking into account 
the scattering spots in the image plane, which arise 
owing to the finiteness of the depth of field of the 
space imaged by the instrument and the 
three-dimensional nature of the scattering medium. 
This feature can also be taken into account in the 
algorithms for calculating the OTF (F[hh()]). 

The characteristics of the process of image 
transfer through a scattering medium are simulated in 
order to determine the limits of applicability of 
approximate computational methods28,31,34 to predict 
the range of variation of these characteristics in test or 
concrete4,5,9,23,26 applied problems which require that 
all factors determining the optical-geometric 
conditions of observation be taken into account 
correctly, and finally to analyze the effect of these 
factors on image quality.9,14,23,26,31 An illustration of 
the latter is Ref. 35, where it was found that extremal 
distortion of the image of small objects by a turbid 
layer occurs when the layer migrates between the 
object and the observer. In Ref. 44 the existence of this 
effect was confirmed by an independent laboratory 
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experiment. The Monte-Carlo investigation of the 
properties of the unit-pulse response function hh() 
performed in Ref. 34 enabled Belov33 to establish the 
reasons and conditions for the appearance of the t-effect 
in the observation of not only small but also extended 
objects (two aspects of this effect are studied in an 
Appendix). 
 

APPENDIX I 
 

The tracing-paper effect. A well-known result of 
investigations of the dependence of the OTF (F[hh()] on 
the parameter z1 (Fig. 1) is that the quality of images of 
objects observed through a scattering, layer decreases 
monotonically as the layer approaches the observer. To 
confirm this result it is proposed in Ref. 15, for 
example, that an elementary and very graphic 
experiment be performed: an arbitrary text is screened 
from the observer with tracing paper. By placing the 
tracing paper between the observer and the text it can be 
verified that the text can be seen clearly when the 
tracing paper is adjacent to the text. As the tracing paper 
is moved the text rapidly becomes blurry and then 
vanishes, and there is no longer any position at which 
the text can be read. 

We shall try to find the reason for the contradiction 
between the results of this experiment and the results 
described in Refs. 35 and 44, where it is shown that the 
dependence under study can be, for example, of an 
extremal character. The reason for the apparent 
contradiction can be easily established by talcing into 
account the fact that in Refs. 35 and 44 the experiments 
were performed with a luminous object while the 
experiment with the tracing paper is performed under 
conditions when the object is illuminated by an external 
source. In the second case the observed signal contains a 
component Ih (light haze), while in the first case this 
component is absent. Let us see what changes this can 
bring about when the image quality is evaluated. 
Suppose the object is observed with the help of an 
optical instrument with a fixed threshold contrast 
sensitivity kth (Fig. 3), which is independent of the 
external parameter z1. Consider the contrast between an 
arbitrary pair of points in cases when the luminous 
object is observed: 
 

 
 
It follows from laboratory experiments35,44 and 
calculations7,8,33 that it can have an extremal character 
(curve 1, Fig. 3). We stress that all processes 
occurring with the propagation of radiation from the 
object to the observer are taken into account in the 
intensities I1,2. Consider now the same dependence but 
in the case when an object with reflective capability, 
analogous to the radiative capability in the first 
experiment, is observed. Let the intensity of the 
external source be such that the intensities I1,2 are 
equal in both cases. It is obvious that the contrast 
factor between the same pair of points will decrease by 
a constant amount: 
 

 
 
i.e., k2 = k2(z1) can be represented by the curve 2 
(Fig. 3). If kth > k2(z1) for z1 > zthr, then the 
dependence k(z1) which we observe with the help of 
the optical instrument will correspond to the curve 3 
in Fig. 3. It is precisely this character of the dependence 
that follows from the experiment with the tracing paper 
and we are obviously fully justified in calling it 
apparent. To establish its true character a device with a 
different, but adequate for this purpose, contrast 
sensitivity kth must be employed for the observations. 
 

 
 
FIG. 3. Explanation of the tracing-paper 
experiment: 1 – the contrast for observation of 
luminous objects; 2 – external illumination of 
reflecting objects; 3 – the apparent dependence 
k = k(z1). 

 
APPENDIX II 

 
We shall explain how the t-effect can be explained 

based on the results of Refs. 12 and 13, namely, that the 
optical transfer functions h

ˆ ( ) [ ())]K F h    depend on 
the parameter z1 (Fig. 1). Let the frequency-contrast 
characteristic be ˆ ˆ( ) ( ) / (0),K K K    i.e., to simplify 
the explanation we shall confine our attention to vision 

systems with circular symmetry ( 2 2 ,      where  

and  are the spatial frequencies in the image plane). Let 
the object being observed have the spectrum F0() 
(Fig. 4). We shall study three positions of the layer on 
the line of sight (the layer at the object – a, the layer at 
the observer – c, and the layer between them – b). It 
follows from Refs. 12 and 13 that 

(1) (2)
1 1( ; ) ( ; ),K z K z    if (1) (2)

1 1 .z z  For positions of 
the layer a–c these functions are shown on the left side 
of Fig. 4. For linear systems the spectrum of the image 

1 1 0 1
ˆ( , ) ( ) (0) ( ; ).F z F K K z     The form of the 

functions F1(; z1) for z1 corresponding to the 
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positions of the layer a–c is shown on the right side of 
Fig. 4. Let us compare F0() with (1)

1 1( , )F z  and 
(3)

u 1( , ).F z   
 

 
 
FIG. 4. Explanation of the t-effect. F0() is the 
spectrum of the object; K() is the 
frequency-contrast characteristic; and, F1() is 
the spectrum of the image. 

 

In the first case, when the half-width (1)
1( , )K z  

is much greater than the half-width of the spectrum 
F0() the spectrum of the image corresponds to the 
spectrum of the object and the distortions are 
minimum. In the case (3)

1 1 ,z z  on the other hand, 
(3)
1( ; ) ( ) const.K z      The existence of a "shelf" 

for the function K() is proved, for example, in 
Ref. 49 and is explained by the unscattered radiation. 
These two features of (3)

1( , )K z  lead to the fact that 

the spectrum F1(; z1) is almost everywhere similar to 
the spectrum F0(), with the exception of a small 
neighborhood of the point  = 0, where a relatively 
large fraction of all of the energy contained in the 
image is concentrated. The last remark should lead to 
the appearance of a quite strong background which is 
uniform over the area of the frame and on which an 
image of the object is formed with all spatial features 

preserved. Laboratory experiments confirm this 
result;35,44 for (3)

1z z  undistorted, but low-contrast 
images of the objects are observed. Consider now the 
case (2)

1 1 .z z  It is obvious that if the frequency at the 

center of the spectrum F0() is equal to the frequency 
at one-half the intensity K(; z1), then significant 
distortions will occur in the form of the spectrum of 
the object in the image; this will be manifested as a 
change in its spatial structure, i.e., it will lead to the 
t-effect. Obviously, if the form of the spectrum F0() 
is made more complicated, then repeating the 
foregoing arguments we arrive at the conclusion that 
the t-effect can arise repeatedly (for different regions 
of the spectrum F0(), corresponding to different 
spatial structures of the object) as z1 varies, i.e., the 
analogous result obtained in Ref. 33 in the analysis of 
the effect of the conditions of observation on the 
resolution in vision systems is confirmed. Thus the 
t-effect, as one possible type of dependence of the 
image quality on the parameter z1, can be explained 
both in the spatial domain (using the concept of 
unit-pulse response) and in the frequency domain (in 
the language of optical transfer functions). 
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