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Airborne lidar systems can be made more effective by processing the measurements 
using the methods of reconstructive tomography. A tomographic sounding scheme and an 
algorithm for interpreting lidar signals which implement the principle of computational 
tomography are described. The stabi1ity of the algorithm with respect to errors in the 
starting data is discussed. The results of the solution of model problems are presented. 

 
 

A wide range of problems associated with the 
study of the spatial distribution of the aerosol 
component in the earth’s atmosphere, and dynamic 
processes giving rise to transport of aerosol pollutants 
can be successfully solved using airborne lidars,1–3 
which enables real-time relocation of the lidars within 
the region of space under study. Space-based lidar 
systems that will enable global monitoring of 
atmospheric aerosol are under development.4 The 
possibility of changing the position of the lidar relative 
to the volume of space under study makes it possible to 
consider the problem of determining the spatial 
structure of the optical characteristics from lidar 
observations from the viewpoint of reconstructive 
tomography.5–7 This approach to the solution of the 
problem with sensing from aircraft was suggested in 
Ref. 6, where the term "tomographic lidar" was first 
introduced. The starting information in the 
tomographic study of the structure of objects consists, 
as is well known, of a collection of projections 
obtained for different angles of observation. Each 
projection consists of a family of integrals of the 
characteristics sought which are taken along lines of 
sight passing through the medium under study. 

In contradistinction to conventional tomography 
the motion of the lidar relative to the medium under 
study makes it possible to obtain a sequence of 
projections determined by linear integrals of the 
spatial distribution of the attenuation coefficient of 
the medium on the interval from the radiation source 
to a point in the scattering volume and corresponding 
to different depths of the sounding beam in the volume 
of the medium. The specific feature of a lidar as a 
tomograph is that the recorded signals depend on the 
local values of the backscattering coefficient. 

The similarity of the structure measurements in the 
case of laser sounding and in transmission tomography 
suggests that data obtained by scanning the lidar along 
different directions be employed to reconstruct the 
spatial distribution of the optical characteristics of the 

medium. In this paper one possible experimental 
implementation of this idea with airborne laser sounding 
is examined and an algorithm for interpreting the 
corresponding measurements is described. 

Let the lidar be located on a platform moving in a 
straight line at some altitude H above the earth’s 
surface, and let the sounding be performed in the 
direction of the lower hemisphere. The object of study 
are spatially inhomogeneous fields of the optical 
characteristics: the attenuation coefficient ( )r


 and 

the backscattering coefficient ( ),r


 where r


 is the 
radius vector of the point (x, z) in a rectangular 
coordinate system, fixed on the vertical scanning plane 
passing through the direction of motion of the 
platform; x and z are horizontal and vertical 
coordinates, respectively. 

We affix to the lidar, which moves along the 
X-axis, a polar coordinate system characterized by the 
radius vector  = (sin, cos) along the direction 
of sounding and the polar angle  measured from the 
direction toward the nadir. If the lidar is located at the 
point * ( *, *),r x z


 then the signal from the 

scattering volume located at the point r = r* +  is 
given in the single-scattering approximation by the 
following expression: 
 

 (1) 
 

where S(r*, , ) = P(r*, , )22/(P0A); P0 and 
P(r*, , ) are the power of the transmitted signal 
and the power of the received signal, respectively; A is 
the instrumental constant; and,  = (sin, cos). 

In the approach studied here the method of 
tomography consists of simultaneously sensing the 
medium from different directions at different polar 
angles  and then solving a system of equations of the 
form (1) which arises in the process. In the simplest case 
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it is sufficient to have lidar signals at two polar angles 1 

and 2 in order to reconstruct the spatial distribution of 
characteristics of (x, z) and (x, z). In this case there 
will be two equations for the two unknowns  and  at 
each point in space (x, z). We shall examine an 
algorithm for processing lidar signals in this case. 

For definiteness assume that the sounding is 
performed at the nadir (1 = 0) and at an angle 
2 =  to the nadir with a pulse repetition frequency 
. Then discrete readings can be determined along 
the X and Z axes (Fig. 1): xj = jx, j = 0.1, , n; 
zi = iz; i = 0.1, , M, where x = V/, 
z = x ctg (V is the velocity of the lidar). For 
these readings a finite-difference analog of the 
system of equations (1) can be constructed in the 
form of a system of grid equations8: 
 

 
 

 (2) 
 

 
 

 
 

 
 

 
 
Here the following notation has been adopted: 
characteristics with a superscript  are obtained by 
replacing Eq. (1) at 2 =  by its discrete analog; 
variables with the pair of subscripts (i, j) refer to the 
point (xj, zi). The system of grid equations (2) is 
defined for j  i and 2N unknowns, where the number 
of nodes N = M n – M(M –1)/2. 
 

 
 

FIG. 1. A discrete scheme for two-beam 
tomographic sounding of the atmosphere. 

 
The general approach to the solution of the system 

(2) is as follows. A solution is obtained sequentially 
for each layer zi, i = 1, 2,  starting with i = 1. This 

requires a priori knowledge of the boundary values 0j. 
If such data are not available, the problem can be 
solved by setting 0j = 1j. The solution at the i-th 
layer will be determined in terms of the solution at the 
preceding layers. Then at the i-th layer for a given 
value of j the system (2) will be defined for a pair of 
unknowns ij and ij and reduces to a system of two 
linear algebraic equations of the form 
 

 
 (3) 

 
 

In Eq. (3) the following notation is adopted:  
 

 
 

 (4) 
 

 
 

The repeated solution of a system of equations of 
the form (3) is the main feature of the processing of 
lidar signals in the problem under study. We shall 
discuss briefly the special features of the inversion of 
the system (3). As the step z is made to approach zero 
the system (3) becomes degenerate, and its 
determinant D = z (cos – 1)/cos approaches 
zero. However this is not reflected in the reconstruction 
of the quantity In  from the system (3): 
 

 (5) 
 

which does not depend on z and remains stable. On 
the other hand, the calculation of the attenuation 
coefficient a from the formula 
 

 (6) 
 

will be unstable, since in the limit z  0, the 
expression (6) is an indefinite form of the type 0/0. This 
becomes clearer when the errors in the solution of the 
system (3) are analyzed. Let the exact right side of (3) 

0 0
1 2( , )b b  correspond to the exact solution (ln 0, 0). 

It can be shown that the error in the reconstruction of 
ln  when the right side of Eq. (3) 1 ,b  2b

  contains an 
error will be characterized by the quantity 
 

 (7) 
 
where 
 

 
 

Analogously for  we have 
 

 (8) 
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It is obvious from Eqs. (7) and (8) that as z  0 the 
error  increases without limit, while the quantity  
is always bounded as long as   0. Thus the problem 
under study is stable only with respect to the 
backscattering coefficient (x, z). The stable 
reconstruction of the spatial distribution of the 
attenuation coefficient is achieved by using 
regularization methods.9 This is most simply achieved 
by restricting the value of the norm of (x, z) 
separately for each i-th layer, defining the stabilizing 
functional in the form 
 

 
 

The application of Tikhonov’s method of 
regularization ultimately gives for each i-th layer 
n = n – i + 1 independent pairs of equations. Each 
pair of equations is the regularized analog of the 
system (3) with a common regularization parameter  
for all equations. For uncorrelated errors 1 and 2 the 
estimate of the optimal value of the regularization 
parameter has the form 
 

 (9) 
 

where  is the relative error in ij ij( )G G  (for simplicity 

assumed to be constant for all j). It is obvious from the 
formula (9) that to determine the optimal value of  
with a fixed error  in the initial data it is sufficient to 
evaluate a priori the average value of the square of the 
attenuation coefficient a over the i-th layer. The 
relative mean-square error in the reconstruction of  in 
the i-th layer with the optimal value of the 
regularization parameter  is given by the expression 
 

 (10) 
 
It follows from Eq. (10) that as   0 the error in the 
solution also approaches zero. In addition, the error in 
the solution remains bounded as D  0. The spatial 
distribution of the attenuation coefficient  is 
reconstructed more accurately as the density of the 
medium increases and as the discretization step z and 
the viewing angle  increase. Setting an admissible 
level of discretization of the solution , the admissible 
discretization step for media with different optical 
density can be determined from formula 
 

 (11) 
 

For example, it follows from Eq. (11) that, for 
 = 10% and  = /3 the attenuation coefficient  
can be reconstructed with an error of 20–30% and a 
spatial resolution of the order of 1 km with a visibility 
range exceeding 10 km. The admissible discretization 
step z is proportional to the visibility range. The 
general relationship between the inversion error and 

the spatial resolution follows from formulas (10) and 
(11): a gain in the accuracy in the reconstruction of  
will be accompanied by a gain in the resolution and 
vice versa. 

Substituting z from Eq 11) into the expression 
for a without regularization (8) gives 
 

 (12) 
 
The relation (12) gives a relation between the error 
obtained in the regularized solution and the error 
obtained without regularization with the same 
discretization step z. It is obvious from Eq. (12) that 

these errors differ by the factor 21 ,   which for 

small values of  is close to unity. The discretization 
steps z for regularized and unregularized problems are 
in the same ratio. Therefore the solution obtained 
without regularization will be close to the regularized 
solution, if the step z is chosen based on the error in 
the initial data. Based on the remarks regarding the 
choice of z the algorithm for inverting the system (2) 
can be written in the f orm 
 

 (13) 
 
where Gij and 

ijG  are defined in Eqs. (4). 

In the algorithm (13) the discretization step along 
X-axis is related with the discretization step along the 
Z axis: x = z  tan . The limit on the spatial 
resolution established for the z coordinate is 
transferred also to the x coordinate. 

A simple modification of the algorithm (13) 
makes it possible to eliminate the limits on the spatial 
resolution along the X axis. If the step x is reduced by 
a factor of m, x = x/m, then for the new readings 
xj = j x, J = l, 2,..., in the algorithm (13) the 
quantities 

ijG  are given by the formula  
 

 (14) 
 
where J = im, im = 1, ..., n. 

Within the layer zi  z  zi+1 the backscattering 
coefficient (x, z) can be determined by introducing a 
correction for transmission through the top boundary 
of the layer to the level z by interpolating (x, z) at 
each point on the boundaries zi and zi+1. 

As an example of the processing of lidar signals 
Fig. 2 shows the results of the numerical modeling of 
the problem of tomographic sounding of a weakly turbid 
atmosphere. Figure 2a shows the initial spatial 
distribution of the backscattering coefficient (x, z). 
The average value of the attenuation coefficient  was 
equal to about 0.1 km–1. The result of reconstruction of 
the field (x, z) with an error of  = 10% in the 
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experimental data is presented in Fig. 2b for the 
following conditions of simulation of the 
experiment: the angle  = 45, x = 0.1 km, and 
m = 10. Figure 3 shows the error, averaged over the 
layer, in constructing (x, z) from the penetration 
depth in the scattering medium with 5% and 10% 
errors in the signals. 
 

 
a) 

 

 

 
 

b) 
 
FIG. 2. The reconstruction of the two-dimensional 
spatial distribution of the backscattering coefficient 
(x, z) in a numerical experiment: a) model 
distribution (x, z); b) result of the solution of the 
inverse problem with a 10%-error in the lidar 
signals. 

 
We shall point out some characteristic features of 

the solution obtained by means of lidar tomographic 
sounding. First, to construct the solution it is not 
necessary to use any a priori assumptions regarding the 
characteristics sought, as is usually done in the 
solution of the lidar equation. Second, since the signals 
Sij and 

ijS . appear in the form of a ratio in the 

formulas (13) determining the solution for the 
attenuation coefficient aij it is obvious that their 
values can be given to within a constant factor, i.e., in 
reconstructing the attenuation coefficient field (x, z) 
the lidar needs not to be calibrated. 

 
 
FIG. 3. The error, averaged over the layer, in the 
reconstruction of (x, z) versus the penetration 
depth in the scattering medium:  = 5% (1) and 
 = 10% (2). 

 
It may be expected that the method studied here 

will have an advantage over the traditional methods 
for processing signals for a range of problems 
associated with sounding of optically dense media 
when there is a high degree of uncertainty in the lidar 
ratio. The proposed method can be recommended for 
airborne lidar studies of extended aerosol 
nonuniformities, such as, for example, smoke plumes 
from forest fires or of industrial origin, volcanic 
emissions, etc. The method can be easily extended to 
the case of multiangle and three-dimensional 
tomography. 
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