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The solution of the problem of laser coherent sounding of the atmosphere based on a 
quantitative model for an LR lidar is studied. A mathematical model, that gives an 
adequate quantitative description of an LR lidar is constructed. 

A methodology for developing the mathematical software for the measuring system, 
enabling the processing of the experimental results in the dialog mode, is constructed 
based on the model. 

 
 

INTRODUCTION 
 

The study of the properties of the atmosphere in 
full-scale experiments requires constant improvement 
apparatus as well as the improvement and development 
of advanced lasers and laser radiation detectors. The 
so-called LR lidar,1,2 in which an integrated scheme 
where the same laser is both the source and detector of 
radiation, is implemented, is very promising for these 
purposes. This scheme was improved by the use of a 
Q-switched laser, coupled with a mirror (natural 
reflector) located at a significant distance away from the 
laser system.3,4 In Refs. 3 and 4 Q-switching was 
achieved by moving periodically one of the mirrors of the 
laser cavity. It is well known that in this case the light 
is phase-and amplitude-modulated.5,6 Mixing of the 
light reflected from the external mirror and returning 
into the cavity with the light inside the cavity 
(amplitude- and frequency-modulated) results in the 
appearance of beats. This phenomenon can be regarded 
as coherent reception of laser radiation. 

The proposed reception system is very attractive for 
atmospheric sounding because, in contradiction to 
conventional heterodyne detection, it does not impose 
any serious restrictions on signal stability.7 Since it has a 
narrow gain band it is also much more noise resistant 
than the classical sounding method using a 
photodetector. This makes it possible to work at any 
time during day and throughout the year in both the 
visible and infrared regions of spectrum. 

The obvious advantages of coherent reception of 
radiation are, however, accompanied by a definite 
difficulty in signal processing. The complicated 
interaction of different parameters of the scheme, the 
fact that both frequency and amplitude modulation of 
the mixed signals are always present at the same time, 
and the lack of reliable information about some 
parameters of the system present obstacles to the 

development of areal measurement system for coherent 
sounding of the atmosphere with the help of an LR lidar. 

To overcome these difficulties we present in this 
paper a mathematical model of an LR lidar that takes 
into account the most important features of the( 
parameters of the atmosphere is ‘proposed. Such a 
quantitative description of an LR lidar essentially points 
the way toward the solution of the problems in 
atmospheric optics with efficient use of automation. The 
fact is that the proposed model enables convenient 
implementation on a computer and is thus suitable for 
development of computer technology for data 
acquisition and processing, in which "...all information 
about the object region is stored, calculated, circulated, 
transformed, and processed on automated carriers “.8 

In Ref. 9 the problem of describing an LR lidar 
theoretically was studied qualitatively. Here, in order to 
describe in detail the coupled amplitude-phase 
modulation, the system of equations for slowly-varying 
amplitudes and phases is derived from Maxwell’s 
equations. Taking into account the boundary conditions 
and making some physically justified assumptions gives 
a closed system of nonlinear ordinary differential 
equations for the slowly-varying- amplitudes, measured 
at characteristic points (on mirrors). The system of 
equations is solved numerically. A methodology and 
technology for constructing on this basis a measuring 
system with an adaptive measuring scheme are 
formulated. 
 

DERIVATION OF THE EQUATIONS FOR THE 
SLOW-VARYING VARIABLES 

 

The starting point is the equation for a plane wave 
in a medium in the form 
 

 (1) 
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The slowly-varying amplitudes Ei and Pi and the 
phases i (i = 1 for the direct wave and i = 2 for the 
return wave) are separated according to formulas 
 

(2) 
 

where G is one of the quantities E or P. Dropping 
terms which are quadratically small in the quantity 
(1/)d/dt  and taking into account the facts that 1) 
the intracavity medium is nondispersive ( = kñ) and 
2) the phase difference between the field and the 
polarization is equal to /2, i.e., 
exp(i((1 – 2)) = i (this assumption will be 
analyzed below) we obtain the equations for the 
amplitudes and phases in the form 
 

 (3) 
 

 (4) 
 

Here the plus sign corresponds to i = 1. The system of 
equations (3) and (4) must be closed by relations 
which couple the polarization of the medium with the 
field. To calculate the polarization of the active medium 
we assumed that the medium consists of N two-level 
atoms, having the same complex dipole moment d 
interacting resonantly with the mode of the field. For 
macroscopic polarization we have the expression 
 

 (5) 
 
For the four elements ij of the atomic density matrix 
we have the following system of equations: 
 

 (6) 
 

 (7) 
 
where D = 11 – 22; 0 is the frequency of an atomic 
transition  and 7 are the traditional atomic 
relaxation constants; and, 0 is the equilibrium 
population inversion. We assumed the medium relaxes 
much more rapidly than the field (1/,7)dtEi ` Ei 
and the steady-state solution of the system (6) and (7) 
can be employed. 

This system of equations can be, written in terms 
of harmonics by separating the spatial and temporal of 
the quantities E and P. Truncating the expansion in 
the field amplitudes at the quadratic terms we obtain 
the following expressions for the forward and return 
waves of polarization: 
 

 (8) 
 

 (9) 
 
Here we introduce the linear susceptibility 

2

1 0 /N d      and the saturation parameter 

   
2

2 4 / ( ).d C  The relations (8) and (9) close the 

system of equations (3) and (4). 
 

REDUCTION OF THE SYSTEM OF 
EQUATIONS; BOUNDARY CONDITIONS 

 
In this section we shall transfer from partial 

differential equations to a system of ordinary 
differential equations, and we shall also formulate the 
boundary conditions. Figure 1 illustrates the scheme 
of coherent reception of laser radiation. In a coordinate 
system at rest the stationary, moving, and external 
mirrors have the coordinates l, a = a(t), and L, 
respectively. The reflection coefficients of the mirrors 
are equal to R0, R1, and R2. The external loss factor is 
 (this means that the amplitude of the signal which 
has traversed the path and returned has decreased by a 
factor of exp (2L/). Since the spatial dependence of 
the slowly-varying variables is weak we shall 
approximate the spatial derivatives by finite 
differences: 
 

 (10) 
 

 
 

Fig. 1 
 

The relations (10) make it possible to transform 
from partial differential equations to ordinary 
differential equations. The boundary conditions at the 
cavity mirrors make it possible to reduce the number of 
independent unknown functions and make the system 
determinate. We start with the boundary conditions 
for the phases: 
 

 (11) 
 

 (12) 
 

 (13) 
 
where m and n are integers. The relations (11) and (12) 
are the conventional reflection relations at the cavity 
mirrors. The relation (13) expresses the symmetry 
condition, corresponding physically to the fact that 
nodes occur at the mirrors. In other words the phase 
accumulates in the same way during motion in both the 
direct and return directions along the cavity. 
Subtracting (12) from (11) and using (13) and the  
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facts that à ` /2 and that transitions into other 
modes do not occur as a result of the oscillations of the 
mirror (the relation kl = (n – m) holds) we finally 
obtain the relation 
 

 (14) 
 

The relation (14) makes it possible to study 
immediately the question of the evolution of the phase, 
since it is now possible to evaluate the terms in 
Eqs. (4) which "couple" with the field. Thus, for 
example, we have 
 

 (15) 
 

Here t is the time scale of the variation of the 
amplitude E1. The inequality (15) follows from the 
relations at  l, Q p 1, and E1 p E1, which 
hold with good accuracy in an experiment. Thus the 
contribution of the amplitudes in the equations for the 
phases is insignificant and they can be neglected. As a 
result we obtain the following relations which 
determine the evolution of the phases: 
 

 
 

 (16) 
 
where x1 = a, x2 = –l, and the plus sign is used for 
i = 1. Next, we write the boundary conditions for the 
amplitudes on the moving and stationary mirrors: 
 

 (17) 
 

 
 

 (18) 
 
where   2L/c and  = const. The relation (17) is 
the condition of reflection. The relation (18) is the 
conventional law for adding slowly-varying 
amplitudes of signals with close frequencies and 
different amplitudes. Since in an experiment the delay 
time on the path  usually satisfies the condition 
 ` l/(à) we can set E1(t – ) > E1(t) on the right 
side of (18). In addition, because a ` a we have 
 

 (19) 
 

Thus instead of (18) we obtain boundary 
conditions in the form: 
 

 
 

 (20) 
 

Using Eq. (17) and the relation (20) we obtain the 
final system of ordinary differential equations for the 
two independent unknown functions x(t)  E1(a, t), 
y(t)  E2(–l, t): 
 

 (21) 
 

 (22) 
 
where  = (t) and a = a(t). The positive constants  
and  (the gain and saturation constants, respectively) 
are given by the formulas 
 

 
 

 (23) 

 
 
where  = c/l is the inverse transit time in the cavity 
and c is the velocity of light. 
 

ANALYSIS OF THE FIELD DYNAMICS 
 

The system of equations (21) and (22) is the basic 
model, whose parameters can be adjusted so as to 
achieve adequate agreement with experiment. It 
describes well the dynamics of the field both at the 
starting stage of lasing and after beats have been 
established. 

At the initial stage of lasing (far from saturation) 
the amplitudes x and ó satisfy a system of linear system 
of equations, analysis of which gives the threshold 
condition (amplification condition) 
 

 (24) 
 

where the time 1
1 0 1[ (1 )]R R        determined 

by the left side of (24), is the characteristic time over 
which beats are established. The system (21) and (22) 
was studied numerically for times t p 1. The 
dependence of the solution on the amplitude a0 and 
frequency 1 of the oscillations of the mobile mirror are 
of greatest interest from the viewpoint of practical 
applications. The oscillations were assumed to be 
sinusoidal a(t) = a0sin1t. The time step t 
employed in solving the system of equations 
numerically must be chosen so that t ` –1 (the 
"fastest" time for the problem). 

The steady-state solution qualitatively represents 
beats with two characteristic frequencies. The lower 
frequency corresponds to the frequency of oscillations 
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of the mirror and the higher frequency corresponds to 
the difference frequency (the difference of the cavity 
frequency at the time t and t + ). The difference 
frequency can be determined by expanding a(t) near 
t = 0, i.e., a(t)  a01t. Thus, the beat frequency is 
of the order of 
 

 
 

It follows from here that R can be varied by 
varying the product a01. The degree of modulation 
(losses), which affects the amplitude modulation of 
the signal, can be easily determined from the linear 
problem. This gives the relation 2

0 1 / .k a c l  Thus 
the degree of amplitude modulation of the signal can 
be varied by varying the amplitude of the oscillations 
of the mobile mirror. 
 

SOLUTION OF THE SOUNDING PROBLEM 
AND METHODOLOGY FOR BUILDING THE 

MEASURING SYSTEM 
 

One of the key aspects of the solution of problems 
in lidar sounding of the atmosphere is data processing. 
The lack of the accurate quantitative relations between 
characteristics of the atmosphere and the parameters of 
the lidar complex as well as the impossibility of 
calibrating the system are serious obstacles 
(unfortunately, we cannot vary the absorption 
coefficient in a fixed interval so as to determine how the 
amplitude of the beats or some other quantity changes in 
the process). To overcome these obstacles we propose a 
complex approach consisting essentially of the fact that 
the solution of the sounding problem (in the present case 
the determination of the absorption coefficient and path 
length) depends substantially on the model solution of 
the direct problem. 

The mathematical model of an LR lidar described 
in the preceding sections is actually the solution of the 
direct problem of coherent sounding. Indeed, two 
characteristic quantities a and f, associated with the 
degree of amplitude and frequency modulation, 
respectively, can be determined from the graph of the 
time dependence of the amplitude of the field on the 
stationary mirror, shown in Fig. 2 (compare with the 
oscillogram of heterodyne beats of Fig. 3 of Ref. 4). If 
necessary, they can be averaged over several periods of 
oscillations of the mirror. The values of this quantities 
depend on the absorption coefficient  and path length 
L and this dependence, as computer experiments show, 
is unique and quite smooth. The latter facts form the 
basis for the method used to calibrate the measuring 
system. The essence of the method is as follows. The 
range X of the variation of L and  is fixed, so that to 
each pair of values (L, ) there corresponds a point in 
X. Then for each point from X the equations of the 
model (21) and (22) are solved numerically, and the 
corresponding pair of values (a, f), representing a 
point in some region Y, is calculated from the 

solutions of these equations. As a result we obtain a 
one-to-one mapping X  Y, which is the solution of 
the direct sounding problem. This actually solves the 
problem of calibrating the measuring system, and 
there no fundamental difficulties in solving the 
inverse problem, so that it reduces to simple 
inversion of the one-to-one mapping. 
 

 
 

Fig. 2 
 

 
 

Fig. 3 
 

Next, after a, f from the experimental curve and 
using the inverse map Y  Õ, it is not difficult to 
construct the values of the absorption coefficient  and 
path length L. 

The methodology described above for measuring 
the optical parameters of the atmosphere also gives a 
method for determining the nominal (in the sense of 
achieving a fixed accuracy) parameters of the measuring 
system and the nominal measuring ranges. The choice of 
measuring range is made based on a simple limiting 
criterion. Within the range the number of small beats 
per period of oscillation of the mirror should be constant 
(a value of about 7–12). The meaning of this criterion is 
that the curve employed for interpretation should not 
change qualitatively within one range (no new 
differential features should appear). This parameters a0 
and 1 are chosen based on this criterion. 

The mapping X  Y corresponding to one range, 
is precalculated on a powerful computer and then fed in 
a compact matrix form into a computer-based data 
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processing system. The number of ranges is limited only 
by the size of the working memory of the measuring 
system. 

Software enabling data processing in the dialog 
mode as well as making it possible to create a data base 
allowing for different ranges of measurements has been 
developed based on the proposed concept. 
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